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Abstract. In this paper “the plane bifilar pendulum model” is proposed to understand excessive lateral 
vibration of a suspension footbridge under crowd excitation. We use a plane bifilar pendulum to 
describe a suspension bridge by considering its structural features, which consists of two strings and a 
central rigid body representing the cables and deck of the footbridge respectively. In addition, the 
vertical and lateral forces exerted by crowd on the deck both are considered to be harmonic with 
constant amplitudes. According to Lagrange method, we found that the dynamic behavior of the 
suspension footbridge under crowd-induced excitation can be described by a Hill equation. The 
solution and its stability of the plane pendulum model are theoretically analyzed based on the 
perturbation method, the correctness of which is verified by numerical simulations. By applying the 
analytical results to the London Millennium Bridge (a famous suspension bridge), we can easily explain 
the occurrence of excessive lateral vibration with 0.48 and 0.96 Hz and the “lock-in” phenomenon. Our 
research suggests that structural features of a suspension footbridge should not be ignored in the 
investigation of the pedestrian-footbridge interaction. 

Introduction 
More and more slender footbridges with low natural frequencies (less than 3 Hz) have become 

popular in the past few years with the improvement of mechanical characteristics of materials and 
technological advancements. Experimental measurements showed that a pedestrian can induce 
both vertical and horizontal dynamic time-varying forces on the surface of a structure. And the 
frequency of vertical force is equal to the pacing frequency about in the range of 1.4 − 2.4 Hz, 
while that of the horizontal force is half the pacing frequency. Then the frequency is between 0.7 
and 1.2 Hz [1]. Therefore, many modern footbridges are very sensitive to human actions in the 
lateral direction.  

The London Millennium Bridge is the best-known footbridge closed after opening due to 
excessive lateral vibration. It was found that the first frequency of the lateral modes of the bridge 
is 0.48 Hz, which is so far below normal range of lateral forcing frequencies induced by 
pedestrians. It is difficult to explain the occurrence of so low lateral frequency by applying direct or 
internal resonance theory. Dynamic interaction mechanisms to explain excessive lateral vibration 
of footbridges have been focused in recent years. By assuming that the force exerted by 
pedestrians on a moving bridge is harmonic and its amplitude relates to the lateral displacement 
of the bridge, Piccardo and Tubino [2] described the motion of the Millennium Bridge using a 
Mathieu equation. In their model, unstable oscillations of the bridge occur if the frequency of the 
lateral frequency of the footbridge approaches half the lateral step frequency. Then parametric 
excitation mechanism was proposed by them to understand the occurrence of lateral mode 
frequency of 0.48 Hz in the Millennium Bridge. It need to be noticed that Dallard et al. [3] 
assumed from the tests that the lateral force induced by pedestrians is proportional to the lateral 
velocity of the Millennium Bridge, which is different from that of Piccardo and Tubino.  

As can be seen from l i terature about  pedest rian-footbridge interact ion, two points 
are worth highlighting concerning the current study of lateral vibration of footbridges. One is 
that the emphasis almost has been put on the lateral force model of pedestrians; the other is that 
the structural features of footbridges were seldom taken into account. The footbridge in almost 
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all dynamic models was regarded as a damped single-degree-of-freedom system no matter what 
its structure type. Piccard and Tubino by proposing a new lateral force model of pedestrians to 
explain the occurrence of lateral mode frequency of 0.48 Hz in the Millennium Bridge. This 
inspired us to find clues to the mystery about the Millennium Bridge by considering its structural 
feature in dynamic model. McRobie et al. [4] investigated experimentally on the lock-in 
phenomenon in suspension bridges by using a section model consisted of two diagonal bars 
representing the cables and the central rigid body the deck according to wind engineering 
practice. Considering the features of a suspension bridge, it may be appropriate to be modeled by 
using a section cut from the bridge if the attention is paid to its lateral vibration. By simplifying 
the vertical and lateral forces exerted by pedestrians to be harmonic, shown as in Fig.1, we find 
that the dynamics model describing pedestrian-footbridge interaction is governed by a Hill’s 
equation. We call this model “the plane bifilar pendulum model”. By applying this plane model 
we can easily explain the occurrence of the first and second lateral frequencies (0.48 and 0.96 Hz) 
and the “lock-in” phenomenon in the Millennium Bridge. Our research indicates that the 
structural type of a footbridge maybe also import in the study of pedestrian-bridge interaction, 
which usually was neglected in previous works. 

The rest of the paper is organized as follows: In section 2 the governing equation of the plane 
pendulum model described in Fig.1 is established. In sections 3, the stability charts of the 
governing equation are derived. Conclusions are given in section 4. 

The plane bifilar pendulum model 
Fig.1 illustrates our dynamic model for lateral vibrations of a suspension bridge under 

crowed-induced excitation. In order to simplify the problem, we assume that vertical and lateral forces 
induced by pedestrians act on the center of mass of the deck (point C in Fig.1), which are denoted by 

)(tFV  and )(tFL  respectively. The length of the same two cables and the width of the deck are are 1L  
and 22L  respectively. Furthermore, the tensile and bending deformations of cables and deck are not 
taken into consideration for simplicity. The mass of deck is assumed to be M  and the mass of cables is 
very small compared to M  that can be neglected. Let a coordinate system center at point O . The 
angles between two cables and y  axis both are assumed to be 0θ  when the bridge is at rest; the 
rotation angles of two cables leaving from equilibrium positions are assumed to be 1θ  and 2θ  
respectively when the bridge sways. The governing equation of the model can be given by using 
Lagrange method: 

 

 
 

Figure 1. The plane bifilar pendulum model   
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It is worth pointing out that the natural circle frequency of the plane bifilar pendulum model, denoted 
by ω  and derived by letting 05,4,3,1 =α  in Eq.(5), is given by .2αω = The above result is simplified as 

1Lg=ω  if we take 2/0 πθ = , which coincides with the natural circle frequency of a plane single 
pendulum. For further analyzing the dynamic of the plane bifilar pendulum, we consider the vertical and 
lateral forces produced by pedestrians varying harmonically are expressed by [5] 

( ) ( ) ( ) ,,,cosg LVitxmtF ipii =Ω= λα  

where λ  is the percentage of synchronized pedestrians, ,,, LVii =α  the so-called “dynamic loading 
factors” and depend on the considered load harmonic and on the load directions. g  is the gravity 
acceleration, LVii ,, =Ω ,the dominant walking frequencies. ( )xmp  is the distribution of the 
pedestrian mass walking with frequencies LVii ,, =Ω , along the bridge, and ( ) LmNxm pspp = , in 
which pN  is the number of pedestrians on the footbridge, psm  the mass of a single pedestrian and L  
the footbridge span length. Substituting the expressions of ( )tFV  and ( )tFL  into Eq.(1), and rescaling 
time according to tLΩ=τ , Eq.(1) can be rewritten as 

( )( ) ,coscoscos2 111 τκεθµτητευθξθ =−−++ &&&         (2)

where “ · ” represents derivatives with respect to τ  for convenience, and 
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By introducing the transformation ( ) ( )tyet tξθ −=1 , Eq.(2) is converted into the following expression, 
without a first derivative, 

( )( ) ,cosτκετψδ =−+ yy&&     (3)

where 2-ξυδ = , ( ) ( )µτητετψ coscos += . 
Inspection of Eqs.(2) and (3) shows that parameter ε  and η  are naturally small since the distributed 

mass of pedestrians on the bridge is generally small compared with that of the bridge; parameter µ , the 
ratio between vertical and lateral walking frequencies, usually is considered equal to 2 according to 
experimental measurements. If 2=µ , the governing equation (3) describing the motion of the plane 
bifilar pendulum model is a Hill equation with 2 harmonic modes. In next section, we will analyze the 
condition of occurrence of lateral large amplitude in the planar pendulum model. 

 

Stability analysis for the plane bifilar pendulum model 
It is said that solutions to Eq.(3) are stable if all solutions are bounded, and unstable otherwise. In 

this section, we will find the transition curves of Eq.(3) with 2=µ  in the εδ −  parameter plane. From 
Floquet theory, any solution along the transition surfaces of Eq.(3) has minimum period LT Ω= π2  or 

LT Ω= π4  if 2=µ . The aim in this section is to show why unstable solutions of Eq.(3) are most 
likely to occur under the condition δ  near 41  or 1 when 2=µ . Assume that δ  can be written in the 
following form 

，⋅⋅⋅++++++= 2322
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where ijδ  are constants to be determined. By using the perturbation method, the stability charts of 
Eq.(3) in the εδ −  parameter plane are presented in Fig.2, in which the solution is stable in the shaded 
regions. As shown in Fig.2(a), at this point the area of the stable regions in the εδ −  parameter plane 
is very small, which means that it is easy to cause a greater sway of the bridge for almost any value of 
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δ  by adding the number of pedestrians. Considering the definition of δ , which represents the ratio 
between the lateral natural frequency of the bridge and the lateral walking frequency, it implies that a 
growing lateral vibration of the bridge is almost invertible as long as there are more people walking on 
it. As the number of pedestrians on the bridge is increased, the lateral vibration amplitude begins to 
increase. As shown in Fig.2 (b), (c) and (d), the lateral amplitude getting larger results in stable regions 
increasing rapidly. If δ  is far from resonance points 1/4 and 1, unstable vibrations stabilize quickly 
with the lateral amplitude increasing. Therefore, a large amplitude vibration of the bridge eventually 
appears only when 41≈δ or 1≈δ  is reached.            
            

 
(a)                                    (b)                                      (c)                                    (d) 

  
  

Figure 2. Transition curves of Eq.(3) with 2=µ  in the εδ −  parameter plane for 5.0−=κ  and 
(a) 0.001±  (b) 01.0±=a  (c) 0.02±  (d) 70.0±=a . The solution is stable in the shaded regions. 

Conclusions 
In this paper, we proposed “the plane bifilar pendulum model” to investigate the dynamics of a 

suspension bridge under crowd excitation. We model the suspension bridge by the plane bifilar 
pendulum, which consists of two strings and a rigid body separately representing the cables and the 
deck, shown as in Fig.1. By applying the analytical results in this paper to the London Millennium 
Bridge, we can easily explain the occurrence of excessive lateral vibration with 0.48 and 0.96 Hz and 
the “lock-in” phenomenon. The dramatic difference between the plane bifilar pendulum model and 
others’ models is that the structural feathers of a suspension bridge are taken into account. This may 
reveal that structural feathers of the suspension bridge can never be ignored to study the excessive 
lateral vibration. 
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