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Abstract. In this paper, the effect of slenderness ratio on the ultimate stability bearing capacity of the 
eccentric compressive members is analyzed. 10 specimens are analyzed by ABAQUS finite element 
software and steel structure code at home and abroad. This case is that the eccentric load is applied at 
both ends. The eccentric distance is 27.1mm. The slenderness ratios are 10, 20, 30, 40, 50, 60, 70, 80, 
90 and 100, respectively. The results show that the numerical simulation results considering the initial 
imperfection are in good agreement with the theoretical results, and the two rules is similar; the results 
of standard calculation are basically the same in all countries; with the increase of slenderness ratio, 
the ultimate load decreases; as the slenderness ratio increases, the slope of the softening stage 
increases, which inflects a shift from ductility to instability; however, when the slenderness ratio is 
equal to or greater than 50, the transition of instability to ductility is expressed, and we can define this 
value as the critical value of different failure patterns. 

Introduction 
Steel tubes are widely used in the main force components of transmission towers because of the 

excellent mechanical properties of thin-walled steel tubes. However, the component may have 
different loading due to the actual construction deviation and additional bending moment, which 
includes reverse eccentric compression at both end, eccentric compression at one end, and same 
eccentric compression at both ends. According to the requirement of actual engineering, the stability 
bearing capacity of steel structure has always been a problem that designers and researchers pay 
attention to [3]. However, in practice, it is necessary to carry out a thorough study on its stability 
bearing capacity because of the instability failure of steel structures occurs at times. Domestic and 
foreign scholars have studied the steel members subjected to axial load and moment from different 
aspects. As early as the 18th century, the critical load for an ideal elastic column is often called the 
Euler load proposed by Euler. There are many existing stability theories, including elastic buckling 
and inelastic buckling. The effects of initial imperfection, initial eccentricity and residual stress on the 
stability of the bearing capacity of components cannot be ignored. Yang, L.Y. et al suggested that the 
optimum aspect ratio range of the axial compression members of the transmission tower is from 40 to 
80 [7]. Study on stability of large diameter thin-walled steel tube bending member indicated that the 
stable bearing capacity of the specimens decreased with the increase of the slenderness ratio [6]. 
Study on slenderness ratio of UHV steel tube transmission tower showed that the slenderness ratio of 
the main member was not greater than 35 under action of end bending moment; the slenderness ratio 
of the secondary component is not more than 160 in terms of controlling vibration and reducing tower 
weight [8]. Study on the overall stability of axially compressed cold-formed thick-walled square and 
rectangular steel tubes indicated that stability coefficient was proposed separately for Q235 and Q345 
cold-formed thick-walled square and rectangular steel tubes because of steel structures 
(GB50018-2002) and AISI S100-2016 were not suitable for thick-walled steel members [5]. In this 
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paper, the relationship between stability bearing capacity of eccentric compression and slenderness 
ratio is discussed in terms of numerical simulation and theoretical calculation. This paper mainly 
studies the change of the bearing capacity of the component when the slenderness ratio is from 10 to 
100. At the same time, whether results calculated by design codes matches the numerical simulation 
without residual stress. Then the appropriate suggestions are given. 

Simulation details 

Component design. The slenderness ratio is from 10 to 100, and the increment is 10. The 
dimensions of the components are shown in Table 1. Yield stress is 420MPa. Modulus of elasticity is 
200000MPa. Constitutive model is an ideal elastoplastic model, which is shown in Fig. 3. Component 
design is shown in Fig.1. Finite element model is shown in Fig.2. Material unit selects C3D8R solid 
element. 

 
 

Fig.1 Member design Fig. 2 Finite element model of eccentric member 
Table 1 Component design 

 
 Slenderness 

Effective 
length 
[mm] 

Eccentric 
distance 

[mm] 

Outside 
diameter 

[mm] 

Inside 
diameter 

[mm] 

Flange 
diameter 

[mm] 

Flange 
height 
[mm] 

Ф377×8 

10 1291.5 

27.1 377 361 700 30 

20 2583.0 
30 3874.5 
40 5166.0 
50 6547.5 
60 7749.0 
70 9040.5 
80 10332.0 
90 11623.5 
100 12915.0 

Loading program of specimen. The types of component initial imperfection include initial 
bending and initial eccentricity, both of which reduce the bearing capacity of the component. There is 
no difference between the two effects in nature. Therefore, one of them is taken as the basis for 
calculating the compressive member. The imperfection values are shown in Table 2, whose value is 

1000L  [1]. The initial imperfection is applied to the member in the form of an equivalent 
eccentricity. 

 

e0 

Eccentric 
distance: e0 
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Table 2 Initial imperfection 
Type of steel tube Slenderness ratio Effective length [mm] Initial imperfection [mm] 

Ф377×8 

10 1291.5 1.3 
20 2583.0 2.6 
30 3874.5 3.9 
40 5166.0 5.1 
50 6547.5 6.5 
60 7749.0 7.7 
70 9040.5 9.0 
80 10332.0 10.0 
90 11623.5 12.0 
100 12915.0 13.0 

Simulation results and discussion 

Load and axial displacement curves. The relationship of load and displacement is shown in Fig. 
3. Fig. 3(a) shown the eccentric loading without considering the initial imperfections. However, Fig. 
3(b) was not. The load reduces as the slenderness ratio increased, and slope of softening stage 
increased as the slenderness ratio increased, which reflected the change from ductility to instability. 
That was opposite when the slenderness ratio was greater than 50. The relationship of load and 
slenderness ratio was shown in Fig. 4. The load reduced as the slenderness ratio increased, and the 
slope of reduction increased. However, that was contrary when the slenderness ratio was larger than 
90. That could be seen that the load was larger than load considering eccentricity. 
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Fig. 3 Load and displacement curves 
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Fig. 4 Relationship of load and slenderness 
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Theoretical calculation 

Chinese code [4]. The formula specified by the code of steel structures is  

mx x
y

x
x 1x

Ex

1 0.8

N β M f
φ A Nγ - W

N

 
      

 
（1） 

where 2
mx

1

0.65 0.3 Mβ 5
M

  =equivalent moment coefficient; N =ultimate load; xγ =plastic 

coefficient, xφ = stability factor; 1xW = section modulus; ExN  = Euler load; A = cross-sectional area; yf = 
yield stress; xM is ultimate moment produced by the ultimate load.  

ANSI/AISC 360-2010 LRFD. The formula specified by the code of steel structures is  

When
c u

0.2P
P



 

ayax

c u b ux b uy

8 1
9

MP M+ +
P M M

       
 （2） 

when
c u

0.2P
P



  

ayax

c u b ux b uy

1
2

MP M+ +
P M M


  

 （3） 

where c and b are resistance factor; uP = y yAφ f ; uxM  or uyM = yWf ; axM or axM =
E1 P P

βM 


; β = 

1

0.6 0.4 2M
M

 . 

when y4.71λ E f  

y Ey
y 0.658 f fφ   （4） 

when y4.71λ> E f  

y Ey
y 0.877 f fφ   （5） 

where 2 2
Eyf E λ  ; P = ultimate load; EP = Euler load; yφ = stability factor; λ = slenderness ratio; A = 

cross-sectional area; yf = yield stress; β = equivalent moment factor;W = section modulus; M = 
ultimate moment produced by the ultimate load; 1M and 2M = end moment. 

Design standard steel structure. The formula is shown as 
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1y1x

p uy p ux p py

0.85 0.85 1
MP M+ +

P M M


  
 （6） 

when y y

- -

pλ= λ f E λ   

c

c u c yk

1.0
0.9

A

φ

P P φ f




 


 

 （7） 

when e

- - -

pλ λ λ   

e

ec

c uy c yk

1 0.5

0.9 0.05

A

- - - -
p p

- - - -
p p

φ - λ - λ λ - λ

- λ - λ λ - λ

P P φ f

             

             

 



 

    （8） 

when e

- -
λ λ  

c

c u c

0.85
1.2EP P P



 


 

 (9) 

where
_
2

y AEP f λ ,that 

is
_
21 1.2φ λ

      
; uxM  or uyM = yWf ; axM or axM =

E1 P P
βM 


;

-

pλ =
1

0.6 0.3 2M
M

 ;
-

eλ =

 y y crf f  ; p and c = resistance factor; cr = y0.4 f ;
-
λ = relative slenderness ratio; P = ultimate 

load; φ = stability factor; A = cross-sectional area; W = section modulus; yf = yield stress; β = 
equivalent moment factor; 1M and 2M = end moment. 

Comparison of theoretical calculation and simulation 
Simulation and theoretical calculation results are listed in table 3. Ultimate load is shown in Fig. 5. 

It suggested that simulation results with imperfection was slightly larger than calculation results. 
Calculation results by the code were slightly different. That was reason that the residual stress was not 
considered in simulation However, the results calculated by Chinese code were slightly larger than 
others when the slenderness ratio was in the range 40 to 70. The curve calculated by code was similar 
with simulation. 

Table 3 Ultimate load of different method 
Type of 
loading Method Slenderness ratio 

10 20 30 40 50 60 70 80 90 100 

Axial 
load 

[ kN ] 

Simulation 3499 3378 3255 3105 2905 2688 2425 2145 1878 1631 
Simulation with 

imperfection 3462 3316 3163 2982 2749 2515 2249 1982 1733 1510 

Chinese code 3059 2977 2868 2724 2533 2291 2011 1731 1481 1271 
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American code 3043 2948 2797 2600 2370 2122 1871 1631 1409 1209 
Japanese code 3092 3059 2828 2577 2321 2066 1818 1581 1416 1188 
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Fig. 5 Ultimate load of different methods 

Conclusions 
(1) The curve calculated by code is similar with simulation. 
(2) Results calculated by different codes is similar. 
(3) Ultimate load reduces as the slenderness ratio increases. 
(4) First, the value of critical slenderness ratio is 50, which reflects the transition of ductility and 

instability. 
(5) Simulation with imperfection is in good agreement with results calculated by codes. It indicates 

that it is feasible to apply initial imperfections in the form of equivalent eccentricity. 
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