
 

Capturing Four Typical Eye Movement Signals Hidden in 
Electroencephalograph 

Liang-zhi GAN1, Rong-gang ZHAO2, Hai-kuan LIU*1 
1School of Electrical Engineering and Automation, Jiangsu Normal University, Xuzhou, China 

2Defense Department, Jiangsu Normal University, Xuzhou, China 

*Corresponding author 

Keywords: Principal Angles; Kernel Method; Electroencephalograph 
Abstract. We proposed a process to find and recognize four typical eye movement signals hidden in 
EEGs. Eye movement signals contained in EEG are usually looked as artefacts by doctors. But they 
can be useful if the movements are intentionally launched for special purpose. Identifying typical eye 
movements from a flow of EEG signals can facilitate communications. We introduce the way to 
identify four typical eye movement signals by analyzing the electrooculography (EOG) signals with 
kernel principal angles. Supposing one person tries to give signal by moving eyes, it is convenient for 
him or her to move the eyes left, right, up or down. We sampled many typical EOG signals of these 
special conditions. Kernel principal angles are often used to measure the similarity of two data sets.  
With the help of kernel principal angles, we tried to capture the eye movement signals hidden in EEG 
signals and recognize them. The final experiments show that overwhelming majority of the cosines in 
the same classes are over 0.95, and cosines over different classes are less than 0.80. This means that 
kernel principal angles can be effective to capture and identify typical eye movement signals. 

Introduction 
Principal angles propose a method to measure the similarity of two data sets [1]. But this method is 
seldom used, or, it is not popular until the appearance of kernel skill [2]. It is very common to inspect 
the relation between two random variables X and Y. In most cases, we can not get their model or 
information. So we can estimate the relation by data sets 1 mA={x ; ;x }L  and 1 nB={y ; ;y }L (samples 
from the random variables X and Y). These two sets can span two spaces which are denoted as 
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principal angles between the two subspaces are described by the cosines as [1]: 
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subject to  
T Tu u = v v = 1.                                                                                                                                                            (1)  

It is easy to understand that principal angles describe the minimum angle between two spaces. The 
principal angles have two critical defects. The first is restricted to small data sets because as the 
increase of the elements in sets A and B, it will surely be true that 

A BU U ≠ ΦI . This means the two 

spaces UA and UB overlap, cos( ) = 1θ . On this case, principal angles can not measure the similarity of 
data sets. The second defect is that it can only measure linear relations because UA and UB are linear 
combination of samples. To deal with the shortcomings of the traditional linear principal angles, 
nonlinear methods based on kernel trick were given [2].  

A nonlinear transformation T  maps the samples ( 1, )kx k m= L  , ( 1, )ky k n= L into a high 

dimensional feature space: ( )
T

k kx xϕa  and ( )
T

k ky yϕa . So the samples and the spanned spaces are 
written as: 
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Accordingly, the optimization problem (1) is rewritten as: 

( A ) ( B)

T

(u) U , (v) U
cos( ) = max (u) (v)

ϕ ϕϕ ϕ
θ ϕ ϕ

∈ ∈
                                                                                                                   

subject to  
T T(u) (u) = (v) (u) = 1ϕ ϕ ϕ ϕ .                                                                                                                                (4)  

From equation (3) and (4), we know that the explicit expression of the nonlinear transformation T  
is unnecessary. A kernel function ( , )i jk x x  satisfying the inner product ( , ) ( ) ( )T

i j i jk x y x x= ϕ ϕ  is 
enough for the optimization problem (4) [3, 4]. Such kernel trick is widely used in machine learning, 
and several such kernel functions are widely discussed. The well-known inner product is the radial 

basis function 
2 2/( ) ( ) i jx xT

i jx x e− − σϕ ϕ = . It is regarded all-purpose. 

EEG Signals 
EEG signals are very complex[4,5,6]. They often contain eye movement signals and are contaminated 
by different kinds of noises. More seriously, the amplitude of noises is often tens or hundreds of times 
higher than the EEG signals. So digital filtering is necessary. 
  The frequency of useful EEG signals ranges from 0.5Hz to about 120Hz. According to Shannon 
sampling theorem, in order to recover the EEG signals from noisy signal, the sampling frequency is 
at least 240Hz. Considering the EEG signals is the mixture of signals from 0.5Hz to 120Hz, the 
sampling frequency is usually up to 1 KHz. During our experiments, the sampling frequency is set up 
to 1.2 KHz. 
It is well known that the blink time is about 0.2-0.4 second. During this time, about 300 samples 

generated. Intentional eye movement in different direction spends almost 1 second and generates 
1000 samples. The signals inspired by intentional eye movement in different direction lasting about 1 
second are called typical eye movement signals. In fact they are electrooculography (EOG) signals. 
We use EOG signals to recognize eye movements because it is more powerful, discernible and easy to 
get. In fact, many people use different methods to classify eye movement signals [7, 8, 9]. 

Experiments 
Suppose we are trying to capture four typical eye movement signals of an experimental subject. The 
experimental subject can be in five conditions: keeping eyes close calmly, moving eyes up, moving 
eyes down, moving eyes left, moving eyes right. These five conditions are looked as five random 
processes and denoted as Xclose, Xup, Xdown, Xleft, Xright. Experimental subjects carried out these eye 
movements and EEG signals were recorded. Each of the special eye movements (for example, 
moving eyes up) is called a session, which usually lasted about 1 second. The experimental subjects 
sat in a chair and move the eyes up, down, left, right, or keeping close. These experiments were 
carried out time and time again. The sampled data sets were denoted as closeD , upD , downD , leftD , and 

rightD . They are from the random processes Xclose, Xup, Xdown, Xleft, Xright. 
When groups of typical data were sampled for each session, the preparation is over.  
All that remains now is to capture and identify the typical eye movement by online calculating the 

cosines. A flow of data from the experimental subject is recorded and denote as testD . So we can get 
the cosines of kernel principal angles between testD  and data set  closeD , upD , downD , leftD , rightD  one by 
one. By this way, we can find that the samples from the same random process are more similar when 
measured by principal angles. The cosines of principal angles within random processes Xclose are 
demonstrated in fig.1. The other cosines of kernel principal angles between eye moving up and eye 
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close, eye moving down and eye close, eye moving left and eye close, eye moving right and eye close 
were shown in fig.2. 

 
Fig. 1 Close and close similarity 

         

       
Fig. 2 Closed and other state similarity 

 
Fig. 3 Right and right similarity 
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Fig. 4 Right and other state similarity 

  From fig.1 to fig.4 we can find that the cosines of principal angles within random processes (Xclose in 
fig.1 and Xright in fig.3) approximate to 1 and the average is above 0.98. The cosines across different 
random processes (Xclose and other processes in fig.2, Xright and other processes in fig.4) are much 
smaller and the averages are all below 0.90.  By this way the special eye movement signals are 
captured and recognized. 

Conclusions 
We proposed a method to identify four typical eye movement signals hidden in EEGs. Eye movement 
signals contained in EEGs are often looked as artefacts to doctors. But they can be useful if the 
movements are launched for special purpose. Identifying typical eye movements can facilitate the 
communication between person and computer. Our experiment demonstrated the way to identify four 
typical eye movement signals by analyzing the EEG signals with kernel principal angles. The finally 
experiments show that suitable schedule and allocation can help with capturing special eye movement 
signals. With the help of kernel principal angles, we captured the eye movement signals hidden in 
EEGs and recognized them. 
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