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Abstract. Considering the multiplicative model for speckle noises, the kernel regression base on
multiplicative model is built as the maximum likelihood estimation. Then, the gray similarity
measure is put up forward based on the Gamma distribution, so the speckle reduction based on the
multiplicative model for SAR image is obtained. Experimental results show that the proposed method
can reduce speckle noise while preserving targets and edges.

Introduction
Kernel methods have been widely used in the computer field, especially in the settlement of

pattern detection and pattern recognition problems[1]. There are some applications of kernel methods
in the area of image and video processing already, but these methods have not been widely used,
especially in SAR image processing. Compared to other parameter estimation methods, kernel
regression is a non-parametric estimation method [2,3], which is based on the data itself to define the
structure of the model, and this advantage ensures kernel regression method broad scope of
application.

In fact, some technologies in image processing area are closely related with kernel regression, for
example, the second order convolution, the bilateral filter, the edge interpolation and mobile least
squares. But all the kernel regression methods and their improving forms are built on the additive
noise model. They may fail if these methods are directly used to remove the multiplicative noise.

Kernel regression based on the additive model
The classical kernel regression method based on the additive model is as follows:

  , 1, 2, ,i i iy f x i P    (1)
Where iy are measurements,  if x is the (hitherto unspecified) regression function (i.e. an unknown
image) to be estimated, and i are independent and identically distributed zero mean noise values. As
the specific form of  if x is unspecified, in order to estimate the value of the function at any point x
given by the data, one can trust in a generic, local expansion of the function about this point.
Specifically, if x is near the sample at xi, we have the N-term Taylor series.
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A least-squares formulation capturing this idea is to solve the following optimization problem:
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(2)

Kernel regression based on the Multiplicative Model for SAR Image
According to the statistical characteristics of the echo signal, the multiplicative model for SAR

image is built as following[4]
( )i i iy f x n  T

1 2[ , ]i i ix x x , 1,2, ,i P  (3)
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Where 1 2[ , ]i ix x are the azimuth coordinate and distance coordinate, iy is the according density of
image polluted by speckle noise, ( )if x is radar cross section of ground target, in is the speckle noise,
which follows the Gamma distribution with mean 1 and variance 1 L , L is the ENL(equivalent
number looks), P is the number of samples.

From the view of regression theory, ( )if x is the regression function, and iy is the observation at
the coordinate point ix . Correspondingly, the local expansion of the regression function is given by
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where ( )f x and 2 ( )f x are respectively the 2 1 gradient operator and 2 2 Hessian operator, and
vec is the vectorization operator, which lexicographically orders a matrix into a vector, and

0 ( )f x  ,  
T

T
1 11 12

1 2

( ) ( )( ) , ,f x f xf x
x x

  
  

      
 ,

T2 2 2

2 2 2
1 21 2

1 ( ) ( ) ( ), ,
2

f x f x f x
x xx x


   

  
    

 T21 22 23
1 , ,
2
   .

According to the model (1) and the Taylor expansion (4), we have
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so the weighted sample likelihood function is obtained as
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Where iw measures the reliability of in .
From the according Logarithmic likelihood function, the optimization objective function

becomes
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Respectively, the partial derivative with respect to 0 ， 1 ， 2 are obtained and make them 0,ie.
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Then the numerical solution of 0 is obtained by the steepest descent method from the nonlinear
equation Group (5). And 0̂ is just the estimator of the regression function ( )f x .

gray similarity measure

When the order of the local Taylor expansion of the regression function is zero, we have the
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approximation    if x f x . The noise observation is
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So the reliability iw is defined from the view of the probability as
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Parameter selection

When computing (5) and (6), we need the parameter L . According to the model (1), for the
smooth region, we have
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Experimental results:
In this section, a variety of simulations are carried out on the grey-scale Lena image to verify the

performances of various restoration methods, including enhance Lee filter, enhance Frost filter, PM
diffusion, classical kernel regression[3], logarithmic transform method (i.e., converting the
multiplicative model to additive model by logarithmic transform, and then processing it by the
classical kernel regression) and our method. The simulated images are corrupted by the noise with a
wide range of noise variance varying from 0.01 to 0.1. The mean square error (MSE) is used to
evaluate the quantitative quality of the reconstructed images.
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Fig. 1Restoration results of different methods for Lena image corrupted with the variance of speckle noise 0.05.
a Noisy image b Classical kernel regression c Logarithmic transform method d Proposed method

Fig.1shows the results of different approaches in restoring corrupted Lena image with the
variance of the speckle noise 0.05. Obviously, our approach performs significantly better than the
other methods. The comparison of restoration results in MSE and ENL for the reference image
corrupted with various noise variances is shown in Fig.2. Apparently, the performance of our method
is better than other methods for most cases.

Advances in Engineering Research, volume 164

101



In addition, in Fig.3 the results of the previous filters on MiniSAR image from Sandia laboratory
are reported. As can be seen from Fig.3, even on real SAR images, the proposed method manages to
fully remove speckle without smoothing the finest details.

Fig. 2 Comparison of restoration results in MSE and ENL

50 100 150 200

20

40

60

80

100

120

140

160

180

200
50 100 150 200

20

40

60

80

100

120

140

160

180

200
50 100 150 200

20

40

60

80

100

120

140

160

180

200

a b c

50 100 150 200

20

40

60

80

100

120

140

160

180

200
50 100 150 200

20

40

60

80

100

120

140

160

180

200
50 100 150 200

20

40

60

80

100

120

140

160

180

200

d e f
Fig. 3Restoration results of different methods for MiniSAR image.aMiniSAR image b Enhance Lee
filter c Enhance Frost filter
d Classical kernel regression e Logarithmic transform method f Proposed method

Conclusions
In the paper, the kernel regression based on multiplicative model is built as the maximum

likelihood estimation. The significant benefit of the proposed method is that the structure of the
model is established by the data itself only. Experimental results show that the proposed method can
reduce speckle noise while preserving targets and edges.
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