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Abstract. In this paper, a conceptual framework for Remaining Useful Life (RUL) prediction of
lithium-ion battery integrating deep learning is presented. The main processing stages, i.e., feature
extraction, redundant information removal, data preprocessing, DNN model training, RUL prediction
and evaluation, are discussed. Finally, a feature extraction method is presented by analyzing a
lithium-ion battery data set from NASA AMES Center.

Introduction
With rapid development of modern industry, lithium-ion battery technology has been widely

used in vehicle, household equipment, communications, aviation, spacecraft and other fields.
Compared with traditional ones, lithium-ion battery has many advantages including high output
voltage, high energy density, low self-discharge, long cycle life, high reliability and etc [1-2] . These
advantages have brought more widely industrial applications on lithium-ion battery. As the key
power supplies of various industrial systems, defections of lithium-ion batteries would typically lead
to fatal failures in large numbers of complex systems [3-4]. For example, the National Aeronautics
and Space Administration (NASA) once launched the Mars probe. However, as a result of ignorance
of battery’s status, they rotated solar panels to the direction towards the sun. The battery was
over-charged in over temperature, and couldn’t recharge. Finally, the lack of power supply led to the
loss of the detector [5].

Traditional predicting methods for lithium-ion battery Remaining Useful Life (RUL) are usually
divided into two categories: model- driven and data-driven approach [6,7]. The main advantage of the
model-based approach is better performance in RUL estimation. However, this kind of approach
requires more precise description of the electrochemical degradation process using mathematical or
physical or other models. It is difficult to obtain a model with high flexibility and accuracy. In
addition, parameters tuning is another obstacle for some model based method. Therefore, it is hard to
achieve the expected effect with model based method.

Compared with the model-driven method, the data-driven method mainly depends on “raw” data
without requirement of detecting more details, which is similar to the "black box" principle. With the
development of computer technology, this method has been improved rapidly and plays a n
increasingly important role in the field of lithium-ion battery RUL prediction. The conceptual
framework in this paper employs the principle of data-driven method.

The rest of the paper is organized as follows. Section 2 investigates the related research work
concerning autoencoder and deep neural network. The conceptual framework process including
feature extracting, redundant information reduction, data preprocessing and model training is
discussed in Section3. Section 4 analyzes the features of raw data of lithium-ion battery and presents
an approach to feature extracting. Section 5 summarizes the work.

Related Work
Autoencoder. The autoencoder neural network is an unsupervised learning algorithm that attempts to
learn a constant function where the output vector y is similar to the input vector x. In this case, as the
output is similar to the input, the hidden neurons can be used to express the input[8].
Deep Neural Network (DNN). Deep neural network is based on basic artificial neural network
model which consists of an input layer, multiple hidden layers and an output layer. Multiple hidden
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layers can provide excellent feature learning ability. Learned features can provide a fundamental
characterized profile for the data, and the proper number of hidden units can result in higher
prediction accuracy[9]. In the conceptual framework presented in the paper, all layers are fully
connected.

Process of Deep Learning Conceptual Framework for RUL Prediction
The whole process of the deep learning conceptual framework for lithium-ion battery RUL
prediction consists of extracting features from original lithium-ion battery data, removing redundant
information, preprocessing the data, training the prediction model, and evaluating the performance by
comparing the results with different models.
A. Feature extraction. The source data, e.g., voltage, current, temperature and etc., is collected from
the charge-discharge cycles of lithium-ion batteries, and grouped to a set of tuples. Because the
number of the tuples measured in each charge-discharge cycle always varies, the original data can not
be directly input to a prediction model. The characteristic features of each charge-discharge cycle are
required to extract. Typical feature extraction methods comprise voltage estimation based feature
computing approach [10], time series feature analysis [11], voltage decrease time interval feature
computing [12], and geometric feature extraction method [13].
B. Redundant information removal. Typically, there is a positive correlation between information
representation and information dimension. As the number of extracted features increases, the number
of the highly relevant correlated features grows. But this often leads to model information
redundancy and results in low efficiency of model computing. Hence the feature dimensions are
needed to reduce to improve model running efficiency. Typical dimension reduction approaches
include Principal Component Analysis (PCA) [14], Independent Component Analysis (ICA) [14],
and autoencoder. PCA requires that data is subject to the Gaussian distribution. ICA typically
depends on prior knowledge of domain. Due to the uncertainty of data distribution, autoencoder could
be taken as a feature dimension reduction alternative.
C. Data preprocessing. In order to eliminate the negative effects caused by different scale of feature
values, the range of all extracted eigenvalues is transformed to [0,1] by the minimum-maximum
normalization method[15]. The minimum and maximum normalization method conversion formula
is as follows:

is the maximum value of the sample data and is the minimum value of the sample data.
D. DNN model training. Deep network can improve the computation ability of the training model.
As each hidden layer can be a layer of the output of non-linear transformation, the deep neural
network has more more rich expressive capability than a shallow one. In a deep network, each hidden
layer as well as output layer should use non-linear activation function. The trained DNN model is
used for RUL prediction of lithium-ion battery. DNN needs to randomly initialize the weight of the
depth network before using gradient descent method.
E. RUL prediction and evaluation. By using the training model, the lithium-ion batteries RUL
could be predicted. To evaluate the performance of the deep neural network model, the prediction
accuracy needs to compare with other approaches such as Bayesian Regression [16], the support
vector machine (SVM) [17], Linear Regression [18] and etc. To represent the prediction accuracy,
statistics based evaluation methods, e.g., standard deviation, mean squared error, root mean square
error (RMSE), could be adopted to evaluate and compare the performance of different prediction
models.

Lithium-ion Battery Data Analysis and Feature Extraction Method
The data source of lithium-ion battery data set is from NASA AMES Center.[25,26]. The battery

data set is from the NASA PCoE.
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In this paper, we use the three lithium battery data of B5, B6 and B7 in this data set to accelerate
in three different operation modes of charging, discharging and electrochemical impedance
measurement under 25 degrees Celsius Degradation of the experiment, and record the observed data.
The specific steps are as follows:

(1) Charging process: First, a constant current (Constant Current, CC) 1.5A current lithium
battery charge, the voltage was raised to 4.2V, and then keep the voltage across the battery is a
constant voltage Constant Volatage ,, CV) at 4.2V until the charge current drops to 20mA.

(2) Discharge process: Firstly, let the battery discharge at a constant current of 2A until the
voltage of three lithium batteries B5, B6 and B7 drops to 2.7V, 2.5V and 2.2V respectively.

Experiments need to constantly repeat the battery above three operations to speed up the battery
recession process. Impedance measurements provide us with insight into how the battery's internal
parameters change as the battery decays. When battery capacity decays to 70%, battery life ends and
the experiment ends.

The charging experiment data include: Battery terminal voltage, Battery output current, Battery
temperature, Current measured at charger, Voltage measured at charger, Time vector for the cycle.

In a charging process, the changing data involving battery terminal voltage, output current,
temperature, voltage measured, current measured with time are shown in Figure 2-6.

The discharging experiment data include: Battery terminal voltage, Battery output current,
Battery temperature, Current measured at load, Voltage measured at load, Time vector for the cycle,
Battery capacity (Ahr)

In a discharging process, the changing data involving battery terminal voltage, output current,
temperature, voltage measured, current measured with time relationship are shown in Fig. 7-11.

Figure 2. Battery terminal voltage with time Figure 3. Battery output current with time

Figure 4. Battery temperature with time Figure 5. Voltage measured with time

Figure 6. Current measured with time Figure 7. Battery terminal voltage with time
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Figure 8. Battery output current with time Figure 9. Battery temperature with time

Figure 10. Current measured at load with time Figure 11. Voltage measured at load with time
We take a geometric feature extraction method to represent and extract the features of

lithium-ion battery cycling life. The features extracted from the charging data set as well as
discharging data set are shown in Table 1 and Table 2.

Table 1. Features Extracted From Charge Data Set
A charge data set The feature extracted from the data set

Battery terminal voltage The maximum and its corresponding time
Battery output current The time to begin descending and its

corresponding current value
Battery temperature The maximum and its corresponding time
Current measured at charger The time to begin descending and its

corresponding current value
Voltage measured at charger The maximum and its corresponding time

Table 2. Features Extracted From Discharge Data Set
A discharge data set The feature extracted from the data set

Battery terminal voltage The minimum and its corresponding time
Battery output current The current value at the time of stopping and the

corresponding time
Battery temperature The maximum and its corresponding time
Current measured at load The current value at the time of stopping and the

corresponding time
Battery capacity The capacity value

Summary
RUL prediction has great significance on reliability and stability of industrial system that based

on lithium-ion power supply. Artificial intelligence and deep learning provide new method for
research progress. The experiment presents a deep learning conceptual framework for lithium-ion
battery RUL prediction. The main processing stages, i.e., feature extraction, redundant information
removal, data preprocessing, DNN model training, RUL prediction and evaluation, are discussed. In
addition, a lithium-ion battery data set from NASA AMES Center is analyzed and a feature extraction
method is presented.
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The future work is to improve the lithium-ion battery RUL prediction model and finish the
experiment by the proposed feature extraction method.
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