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Abstract. We design an adaptive quantized tracking control for a class of nonlinear systems with 
unknown parameter combined with quantized input. It is proved that by using the proposed method, all 
signals of the closed-loop system are bounded. Moreover, a very coarse quantization input can be 
obtained and the tracking error can be made small by choosing suitable design parameters. 

Introduction 
Quantized control is motivated by the convergence of controls and communications to address 

modern engineering applications involving the use of information technology. An important aspect 
there is to use quantization schemes that have sufficient precision and, at the same time, require low 
communication rate. Consequently, the study of quantized control came to the attention of researchers, 
and various results have been obtained for quantized control of linear systems [1-7]. It was proved in 
[1] that the coarsest quantizer that quadratically stabilizes a single input linear discrete time invariant 
system is logarithmic. With the sector bound approach, the coarsest quantization densities for 
stabilization of multivariable systems in both state feedback and output feedback cases were derived in 
[2]. In [3], with the developed ISS (input-to-state stability) cyclic-small-gain theorem as a tool, the 
feedback control problem of nonlinear systems in strict-feedback form with state quantizers was 
studied. Based on the idea of scaling quantization levels, global asymptotic stability was guaranteed in 
[4] for linear systems with dynamic quantization. In [5], for linear uncertain discrete-time systems with 
input quantizer, a direct adaptive control framework was developed. More details about quantized 
control of linear systems can be seen [6]. 

Compared with the above mentioned achievements, few results about quantized control of 
nonlinear systems have yet been reported. Systems in practice are always characterized by uncertain 
and nonlinear in practice. For this reason, much attention has been devoted to adaptive quantized 
control of uncertain nonlinear systems [7-8]. In [7], for nonlinear uncertain systems with input 
quantizer, a direct adaptive control framework was developed. However, as pointed out by [8], the 
stability condition in [7] depends on the control signal and therefore seems hard to be checked in 
advance. In [8], an adaptive backstepping feedback stabilization scheme was proposed for a class of 
nonlinear systems. However, to obtain the stability condition, the nonlinear functions must be known 
and satisfy the global Lipschitz continuity condition with known Lipschitz constants. Nevertheless, for 
all these schemes, the situation that the quantized input combined with unknown constant was never 
considered. 

The objective of this paper is to design an adaptive quantized control for system (1) such that all the 
closed-loop signals are bounded even with unknown parameter appeared with the quantized input, and 

the plant state x  tracks a given reference signal ( )1, , ,
Tn

r r r rx y y y − =  & K  as closely as possible, where 

ry  and its first n  derivatives are known and bounded. The main contributions of this paper are 
summarized below. 

The nonlinear system we considered in this paper have an unknown constant combined with the 
quantized input, while the coefficients of quantized input of systems in early works are always 1. 
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The way to improve the tracking error is clearly illustrated. That is, by properly choosing some 
design parameters, the tracking error of the quantized control system can be steered to within a small 
neighborhood of the origin while keeping all the other closed-loop signals bounded. 

The remainder of this paper is organized as follows. Section 2 begins with the hysteresis quantizer 
and the state feedback designed, the main results are given in Section 3, followed by the stability 
analysis in Section 4. Finally, we conclude in Section 5.  

Problem Formulation 
In this paper, we consider the following class of nonlinear systems: 
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where y  is the output and x  is the state vector; b  is a unknown constant and ( )t∆  is unknown 

nonlinear function. The input ( )q u  represents the quantizer and takes the quantized values, where u  
is the control input signal to be quantized at the encoder side. The hysteresis quantizer is described as 
follows: 
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where 1
min

i
iu uρ −=  with integer 1, 2,i = K  and parameters min 0u >  and 10 1,

1
ρ
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+
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determines the size of the dead-zone for ( )q u . 
For the system to be controlled, we make the following assumptions. 
A.1: The sign of b  is known. 
A.2: There exit an unknown constant θ  and a known nonnegative smooth function ( )g x  such 

that 
( ) ( ),x t g xθ∆ ≤ ,                                                              (3) 

With the above assumptions, the objective is to design an adaptive controller such that the plant 

state x  tracks a given reference signal ( )1, , ,
Tn

r r r rx y y y − =  & K  as closely as possible, while all the 

closed-loop signals remain bounded, where ry  and its first n  derivatives are known and bounded. 
To begin with, we present some preliminary results. 
The hysteretic quantizer ( )q u  is decomposed into a linear part and a nonlinear part as follows: 

( )q u u d= + ,                                                                  (4) 
for which, the following lemma holds. 
Lemma 1: The nonlinearity ( )d t  satisfies the following inequalities. 

( )
( )

2 2 2
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2 2
min min
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d t u u u

d t u u u

δ≤ ∀ ≥

≤ ∀ ≤
                                                     (5) 

  To deal with the unknown parameter, the Nussbaum gain approach is employed in this paper. 
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Lemma 2: Let ( )V   and ( )ζ   be smooth functions defined on )0, ft  with ( ) )0, 0, fV t t t≥ ∀ ∈   and 

( )N   be an even Nussbaum-type function. For )0, ft t∈  , if the following inequality holds: 

( ) ( ) ( ) ( )( ) ( )1
0

0

1
s

c tV t c e g N dτ τ ζ τ ζ τ τ− −  ≤ + + ∫ & ,                                 (6) 

Where constant 1 0c > , ( )g t  is a time-varying parameter which takes values in the unknown closed 

intervals ,I l l− + =    with 0 I∉ , and 0c  represents some suitable constant, then ( )V t , ( )tζ  and 

( ) ( ) ( )
0

s

g N dτ ζ ζ τ τ∫ &  must be bounded on )0, ft . 

Control Scheme 
In this section, we will design an adaptive control scheme for the nonlinear system with quantized 

input. 
Let the error be defined as 

( )1, , ,
Tn

r r r rx y y y − =  & K ,                                                      (7) 

  rx xβ = − ,                                                                 (8) 
and a filtered tracking error as 

[ ]1 2 1, , , ,1ne λ λ λ β−= K ,                                                    (9) 

where 1 2 1, , , nλ λ λ −K  are design parameters that make 1 2
1 1

n n
ns sλ λ− −

−+ + +L  Hurwitz. Besides, we 
shall employ positive scalars γ , σ  and dk  as design parameters in the subsequent design without 
restating. 

The derivative of e , by considering (8) and (9), can be expressed as 
( ) ( ) ( ) [ ]1 10, , ,n

r ne f x bq u y λ λ β−= + + ∆ − +& K ,                                  (10) 
Define the quadratic function 

21
2eV e= .                                                               (11) 

Differentiating eV  it can be checked that  

( ) ( )e dV ef x ebq u e g eYθ≤ + + +& ,                                            (12) 

where ( ) [ ]1 10, , ,n
d r nY y λ λ −= − + K . 

Let θ̂  be the estimate of θ , and 
ˆθ θ θ= −% .                                                                (13) 

Consider the following Lyapunov function 
21

2eV V θ
γ

= + % ,                                                             (14) 

Differentiating V  yields 

( ) ( ) 1 ˆ
dV ef x ebq u e g eYθ θθ

γ
≤ + + + − &%& .                                         (15) 

Finally, the actual control u  is chosen as  
( )

( )

2

2 2 2

sgn

1

b ev
u

e vδ η
= −

− +
,                                                          (16) 

where η  is a positive design parameter and  
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( ) ( ) ˆ tanh d
egv N ce f x g Yζ θ
ε

  = − + + +    
,                                        (17) 

( )2 ˆ tanh d
egce ef x e g eYζ θ
ε

 = + + + 
 

& ,                                                (18) 

and the adaptive law θ̂&  is chosen as 
ˆ ˆtanh egegθ γ γσθ

ε
 = − 
 

& .                                                         (19) 

Then, differentiating V  yields 

( ) ( ) 1 ˆ
dV ef x eb u d e g eYθ θθ

γ
≤ + + + + − &%& .                                       (20) 

Main Results 
To have the stability analysis of the system, the following lemma is necessary. 

Lemma 3: For any constant 0λ >  and any variable z , the following relationship hold 
2

2 2

z z
z

λ
λ

− ≤ −
+

.                                                          (21) 

We are now in a position to present our main result. 
Theorem 1: Consider the closed-loop system consisting of the system (1), the control law (16), the 
adaptive law (19) and the hysteretic quantizer (2). For any given quantized parameter ( )0,1δ ∈ , by 
choosing the design parameters, all signals of the closed-loop system are bounded, and the tracking 
error can converge to a small residual set by properly choosing the design parameters. 
Proof: From Lemma 1, and note that 0ebu ≤ , we have 

2 2
min

1
4 d

d

ed b eu u k e
k

δ≤ − + + .                                                (22) 

Then by substituting (22) into (20) and using tanh 0.2785egeg eg ε
ε

 − ≤ 
 

, we have 

( )( )2 1V V b N mκ ζ ζ≤ − + + +&& .                                              (23) 
Solve the above differential equation 
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0

0 1
t

tmV V e b N e dκ κτζ ζ τ
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where 

min ,
2dc k γσ

κ  = − 
 

,                                                          (25) 

2 2
min

1
2 4 d

m u
k

σ
θ η= + + .                                                       (26) 

Using Lemma 2, we conclude that V , ζ  and ( )( )
0

1
t

b N dζ ζ τ+∫ &  are bounded. Then we have 

( ) ( )2 21 0
2 2 2

tm me V t V e Hκ

κ κ
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where H  is the upper bound of ( )( ) ( )

0

1
t

tb N e dκ τζ ζ τ− −+∫ & . Following e  is bounded, then by (8) and 

(9) we can conclude that 1, , nx xK  are bounded. v  is bounded. Then u  is bounded. Furthermore, it 
follows that  

( )lim
2t

mV t H
κ→∞

≤ + ,                                                                  (28) 

It is easy to find that by choosing a sufficiently large κ , the tracking error can converge to a small 
residual set. 

Conclusions 
An adaptive quantized tracking control scheme has been proposed for a class of nonlinear systems 

with quantized input having unknown parameter. It is proved that by using the proposed scheme, a 
very coarse quantization of input signal can be obtained and all signals of the closed-loop system are 
bounded.  
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