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Abstract: In order to solve the problem of low accuracy of SOC estimation under complex 
operating environment, an improved SOC estimation algorithm based on temperature correction is 
proposed. First of all, considering the influence of temperature on the parameters of the battery 
model, the parameters of the model at different temperatures are obtained by the least square 
method, and the accuracy of the model parameters is verified. Secondly, under the FUDS conditions, 
the accurate estimation of SOC is realized by extended Kalman filter. Finally, the effect of 
temperature correction on SOC estimation accuracy is analyzed. The results show that the improved 
SOC estimation algorithm based on temperature correction improves the SOC estimation accuracy 
and robustness. 

Introduction 
The important functions of the battery management system are based on accurate SOC 

accuracy. The accurate estimation and high robustness of SOC are the core of the BMS, which play 
an important role in battery performance to prevent overcharging and overcharging, prolonging the 
battery life. 

In the existing SOC estimation methods[1], the accuracy of the integration method depends on 
the sensor, and its calculation result depends on the initial value, and there is a cumulative error; 
The open-circuit voltage method needs a long time to stand and cannot meet the real-time 
requirements; The neural network method requires a lot of data training and is difficult to converge, 
heavily dependent on the sample size and accuracy[2]; The kalman filter can correct the initial error 
and is not sensitive to the initial value of SOC. The noise suppression effect is obvious and the 
convergence is fast, but the estimation accuracy depends on the accuracy of the battery model and 
the statistical characteristics of the noise[3]. The accuracy of the battery model is the key to 
improving the accuracy of EKF estimation. 

In order to solve the problem that the current SOC estimation algorithm does not consider the 
influence of the working environment of the battery, resulting in a low estimation accuracy, an 
improved SOC estimation algorithm based on temperature correction is proposed. First, the model 
parameters at different temperatures are obtained by using the least square method, and the model 
parameters are verified. Secondly, under the condition of FUDS, the accurate estimation of SOC is 
realized according to the extended Kalman filter algorithm. Finally, the accuracy and robustness of 
the proposed algorithm are verified by compared considering temperature correction and not 
considering. 

Create an equivalent battery model 
In the battery SOC estimation, the equivalent battery model uses common circuit elements to 

simulate the external characteristics of the power battery. Compared with the related researches at 
domestic and abroad, the Rint model has the advantages of simple structure and easy to calculate, 
but it cannot reflect the dynamic characteristics of the battery and has lower accuracy. The Thevenin 

8th  International Conference on Manufacturing Science and Engineering    (ICMSE 2018)

Copyright © 2018, the Authors. Published by Atlantis Press. 
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). 

Advances in Engineering Research, volume 164

488



model adds a parallel RC circuit based on the Rint model, which has a simple structure and can 
reflect the dynamic characteristics of the battery with no accumulated error[4]; The PNGV model is 
based on the Thevenin model, and adds a capacitor to represent the load current cumulative voltage 
changes over time[5]; The second-order RC model adds an RC loop based on the Thevenin model to 
simulate the battery concentration difference and electrochemical polarization[6]. 

The n-order RC model based on Thevenin model can exactly simulate the polarization reaction 
of the battery, but it leads to the increase of the model complexity, the increase of computation 
amount and the decrease of real-time. After considering the accuracy and complexity of the battery 
model, this paper selects the Thevenin model for battery modeling, as shown in Figure 1. 
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Figure 1 Thevenin equivalent circuit model 

The battery's external characteristic description equation is as follows: 
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Where Ut is the operating voltage, Uocv is the open circuit voltage, Up is the polarization voltage, I is 
the load current, R0 is the ohmic resistance, Rp is the polarization resistance, and Cp is the 
polarization capacitance. 

Identify model parameters 
Open circuit voltage and SOC 

In order to get the SOC-OCV relationship of charge-discharge process, pulse charge-discharge 
test was used. The specific steps are as follows: 1) the battery is allowed to stand still at room 
temperature; 2) the standard charging is performed till the cut-off voltage, at this time, the SOC is 
100%; 3) 1C discharged to the SOC as the target (SOC interval is 5%); 5) Repeat steps 3 and 4. The 
charging process is similar. In order to obtain the SOC-OCV relationship at different temperatures, 
experiments were performed at 0ºC, 10ºC, 25ºC and 40ºC respectively. 

Figure 2 shows the SOC-OCV curves of charge and discharge at different temperatures. The 
influence of temperature on the open circuit voltage is mainly concentrated in low SOC and high 
SOC, and has a great impact. 
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Figure2 SOC-OCV curves during charge and discharge at different temperatures 

Least squares method to identify model parameters 
The key to establishing the battery model lies in the identification of the model parameters, 
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that is, calculating the ohmic resistance R0, the polarization resistance Rp, and the polarization 
capacitance Cp. In the existing research, the methods of model parameter identification are mainly 
divided into two categories: one is to obtain the model parameters by using the terminal voltage 
curve during the static phase of the hybrid impulse experiment, which has strong physical meaning, 
but the deviation is large and can only be used in qualitative analysis; Second, through the 
discretization of the battery characteristic equation, using multiple linear regression algorithm or 
least squares method to calculate the model parameters, which has high accuracy and practicality. In 
this paper, the least square method is used to identify the model parameters. 

Set the time constant as pτ ： 

p p pR Cτ =                                                              (2) 
The relationship between continuous time s and discrete time t is: 

sTt e= ，Where T is the sampling period. 

The voltage drop inside the battery is Urc： 

0rc ocv t pU U U U IR= − = +                                                  (3) 
Substituting the above formula (1) into Laplace transform, the transfer function of continuous 

time is as follows: 
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From the relationship between continuous time and discrete time and (2), we get the transfer 
function of discrete time as follows: 
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Where the parameters are as follows: 
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The relationship between the model parameters and the estimated values is as follows: 
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The standard form of least squares is as follows: 
( ) ( ) ( )Tz k h k e kθ= +                                                     (8) 

where θ  is to be estimated parameters.  
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The criterion function is minimized, and the estimated value of the estimated parameters θ  is 
as follows: 

1ˆ ( )T T
L L L LH H H Zθ −=                                                   (10) 
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Where, L is the total number of data. 
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Through the voltage and current sensor measurements obtained the operating voltage and 
current data at different times. However, the open-circuit voltage measurement requires a long time 
to settle. Therefore, the open-circuit voltage is obtained according to the real-time estimated SOC 
value based on extended Kalman filter algorithm and the SOC-OCV relationship. Run the 
above-mentioned least-squares calculation process in MatLab. After obtaining a1, a2, a3, the model 
parameters R0, Rp, Cp can be obtained from equation (7). 

EKF estimated SOC 
Battery SOC is affected by many factors and will vary with operating mode. The purpose of 

Kalman filtering is to remove noise interference from the data stream and to calibrate the 
predictions with new measurements by predicting the new state and its uncertainty. In classical 
Kalman filter, state variables, observed variables and system stimuli are linear, but in practical 
applications, the relationship between the three is not linear and requires the use of extended 
Kalman filter. 

The state equation and observation equation of EKF are as follows: 

1 ( , )
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                                               (12) 

Where x is the system state variable, y is the system observation variable, u is the system excitation, 
w and v are the process excitation noise and the observation noise, respectively. 

During battery operation, the current change will affect the other parameters (SOC, operating 
voltage), so the battery operating current is used as the system excitation u. In practice, changes in 
temperature also affect battery parameter. The sensor can be more accurately measure the battery 
voltage, so the operating voltage is used as the observation variable y. State variables refer to the 
amount of change over time under the system stimulus, so the voltage Up of the RC loop and the 
battery SOC are used as the state variable x. 

T
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Where, η  is the charge and discharge efficiency, CN is the nominal capacity.  
The equation of state based on Thevenin model is: 
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EKF estimates the specific steps are as follows: 
1） initialize the relevant parameters and initial value; 
2） Calculate the predicted value of state variables and covariance matrix Pk 

1ˆk k kx Ax Bu−= +                                                        (17) 

1 1
ˆ AT
k k k kP A P Q− −= +                                                      (18) 

3） Calculate the observation matrix Hk and the Kalman gain Kk 
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4） Correcting the state estimate and covariance matrix according to the measurements at k and the 
Kalman gain Kk 

ˆˆ ( )k k k t tx x K U U= + −                                                   (21) 
ˆ( )k k k kP I K H P= −                                                      (22) 

where, Q and R are the covariance matrix of the excitation noise and the covariance matrix of 
the observation noise respectively, and I is the unit matrix. 
5） Loop iterative process 2) ~ 5), to obtain SOC estimation values at different moments. 

Analysis of results 
In order to verify the accuracy of the model parameters identified by the least square method, 

and the effectiveness of the proposed algorithm, the Federal Urban Operating Conditions (FUDS) 
were used. At the same time, the battery temperature was introduced to verify the effect of 
temperature change on SOC estimation. Figure 3 and Figure 4 are the FUDS current curve and 
temperature curve, respectively. 
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Figure 3 operating current under FUDS conditions  Figure 4 battery temperature under FUDS conditions 

Parameter identification results 
Figure 5 is the ohmic resistance R0, the polarization resistance Rp and the polarization 

capacitance Cp at different temperatures, respectively, obtained through the least square method. It 
is found that the temperature has a great influence on the model parameters. The ohmic resistance 
and the polarization resistance decrease with increasing temperature, but the polarization 
capacitance increases with temperature. At -25ºC, Ohmic resistance and polarization resistance have 
increased significantly. The impact of SOC on model parameters is limited, and the model 
parameters vary significantly with SOC only when SOC is small. 
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Figure 5 model parameters at different temperatures 
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Model parameter verification 

The model parameters of the model were substituted into the equivalent battery model. The 
current data of FUDS was used to calculate the model operating voltage, which was compared with 
the working voltage to verify the accuracy of the model parameters. 

Figure 6 is the comparison of the simulation working voltage and the actual operating voltage 
under the FUDS conditions. Figure 7 is the error of the simulation working voltage and the actual 
operating voltage. 

It is found that the simulation voltage and the actual voltage basically coincide, and the error is 
roughly within the upper and lower 0.01V. However, when the voltage variation is large, the load 
voltage error increases greatly. In the latter part of simulation, the error increases rapidly due to the 
lower terminal voltage. Considering, the error is within the allowable range, indicating that the 
parameters of the identified model have higher accuracy and can be used for SOC estimation.  
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Figure 6 Operating Voltage Comparison         Figure 7 Operating voltage error 

SOC estimation result 
    The SOC value based on the accurate initial SOC and safety integration is taken as SOC true 
value. The extended Kalman filter algorithm is used to estimate the SOC when considering the 
temperature factor and not considering the temperature factor, respectively, to compare with the 
SOC true value. 

Figure 8 shows the comparison of SOC estimates and real values under FUDS conditions. 
Figure 9 shows the SOC estimation error. The results of EKF algorithm considering the temperature 
factor are closer to the true values. The maximum error is 3.45%, the mean error is 1.93% , and the 
root mean square error is 2.21%. In the later period, the error becomes smaller and the estimated 
value converges to the true value. However, the estimation results of EKF without considering the 
temperature factor obviously deviate from the real value, and the cumulative error is obvious. The 
maximum error is 6.38%, the mean error is 3.44% and the root mean square error is 3.99%. 

Temperature has a great influence on the equivalent battery model parameters, and accurate 
model parameters are the key of EKF algorithm. Compared with considering temperature correction 
and without consideration, the estimation accuracy of SOC is improved by 46%. 
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Figure 8 Comparison of SOC estimates with real values      Figure 9 SOC estimation error 

Table 1 SOC estimation error statistics（%） 
Error Analysis improve algorithm Traditional algorithm 

Maximum error 3.45 6.38 
Mean error 1.93 3.44 

Root mean square error 2.21 3.99 

Conclusion 
1) Based on the Thevenin model, the least square method is used to identify the equivalent 

battery model parameters at different temperatures, which improves the accuracy of the model 
parameters and is closer to the actual parameter values. 

2) Under the FUDS condition, the simulation working voltage obtained by substituting the 
identified model parameters is calculated, and compared with the actual working voltage to verify 
the accuracy of the model parameters. 

3) Under the FUDS conditions, the accurate estimation of SOC is realized by extended Kalman 
filter, including considering temperature correction and not considering. 

4) Comparing the SOC estimate with the SOC true value, The experimental results show that 
the improved SOC estimation algorithm based on temperature correction is obviously superior to 
the traditional SOC estimation algorithm based on EKF algorithm, and the accuracy and robustness 
are obviously improved. 
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