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Abstract. A Discrete Bat Algorithm (DBA) is proposed to solve the assembly sequence planning 
(ASP) problem. Several key technologies including the position and velocity of Bat Algorithm, 
corresponding operators for updating the position and the position of local search are redefined. The  
fitness function is established based on the geometric feasibility which is quantified, the stability, the 
polymerization for assembly sequence and the frequency of direction changes. The performance of 
the DBA is investigated through a case study of a typical assembly which contains10 parts. The 
near-optimal parameters of the algorithm are determined by the combination of orthogonal test 
(initial positioning) and control variables (precise positioning). It is proved that the DBA, compared 
with Particle Swarm Optimization (PSO) which is applied frequently in assembly sequence planning 
field, is more effective.   

Introduction 
Manufacturing companies are under pressure continuously from global competitors in their product 
development process, which has forced them to speed up the time to market while minimizing costs, 
thus ensuring to stay competitive [1]. Assembly as an important manufacturing process, consumes 
up to 50% of total production time and accounts for more than 20% of total manufacturing [2]. 
Research in its optimization, can quickly speed up the assembly process and reduce consumption. 
Assembly sequences planning (ASP) problem is essentially NP-hard (non-deterministic 
polynomial-hard) problem [3], which is a typical combinatorial explosion problem with the increase 
in the number of components in products. The research achievements of intelligent optimization 
algorithms have been outstanding, which has given a new way to solve the ASP problem over the 
years. Bonneville F et al. [4] proposed to apply genetic algorithms (GA) to ASP problems; however, 
mutations and crossovers are likely to lose some features of the sequence. JM Milner et al. [5] 
proposed to apply simulated annealing algorithm (SA) to ASP problem; however, it has poor 
expansion of search space and finds the most effective area difficultly. JF Wang et al. [6] proposed 
to apply the ant colony optimization (ACO) to the ASP problem; however, it needs to specify the 
basic components in the assembly sequence planning, select the parameters in the formula 
difficultly, and the convergence speed is poor [7]. Wang Song et al. [8] proposed a hybrid frog 
leaping algorithm to solve the ASP problem. The algorithm has better global convergence ability, 
but the convergence rate of the algorithm is too slow in the later stage. 
Bat-inspired Algorithm (BA) [9] is one of the newest swarm-intelligence-based algorithms. In 
recent years, the biological type of BA as a more advanced heuristic algorithm is widely used to 
solve a large number of different types of optimization problems, including engineering design, 
image processing, feature selection, path planning, etc. [10], especially scholars Yassine Saji, such 
as [11] be used to solve the traveling Salesman Problem (Travelling Salesman Problem, TSP) such a 
typical NP hard problem, but few scholars use them to solve ASP problems. In this paper, a discrete 
bat algorithm for ASP problem is proposed, the influence of its parameters is analyzed, and the near 
optimal parameters are determined. The optimal assembly sequence of assembly examples is 
obtained by using this algorithm, and a comparison test with particle swarm optimization (PSO) 
algorithm is carried out. 
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Bat-inspired algorithm 
In 2010, Yang X.-S.et al. [9], a professor at Cambridge University, proposed a new intelligent 
optimization algorithm, the bat algorithm (BA), by simulating the echolocation behavior of bats 
during foraging. The basic BA formula is as follows [9]:  
First, initialize the bat population: the updated formulas for position ix , velocity iv , frequency if , bat 
new position t

ix and new velocity t
iv at t are as follows 

 
( )i min max minf f f f β= + −                                                        (1) 

( )1 1
*

t t t
i i i iv v x x f− −= + −                                                          (2) 

1t t t
i ix x v−= +                                                                  (3) 

 
Where [ ]β 0,1∈ is a random vector and * x is the current global optimal position. 
Secondly, if (rand > ri), a solution is obtained from the optimal solution set and a local solution is 
formed near it. The update formula for each bat in a local search is as follows: 
 

t
new oldx x Aε= +                                                                (4) 

 
Where [ ]1,1ε ∈ − is a random number and t t

iA A=< > is the average loudness of all bats in this 
generation. 
Third, the loudness Ai and the pulse emission rate ri are updated as the iteration proceeds. If the 
random number is less than the loudness Ai and f (xi) <f (x*), the updating formula of the loudness 
Ai and the pulse emission rate ri is as follows: 
 
  1 1t t

i iA Aα+ = −                                                                 (5) 
  1 0 1t t

i ir r e γ+ − = −                                                               (6) 
 
Where α and γ are constants. 

Evaluation indexes and objective function for ASP  
In order to save cost and reduce assembly time, several factors which have great influence on 
product assembly are selected as evaluation indexes, including the geometric feasibility, the stability, 
the polymerization for assembly sequence and the frequency of direction changes. The fitness 
function is constructed after several indexes are weighted. 
The geometric feasibility. The interference matrix was first proposed by Dini and Santochi [12] in 
assembly planning which can be obtained from geometric assembly relations. For an assembly of n 
parts, P ={P1, P2, …Pn}, the interference matrix is I, where

kijdI represents the interference value of the 
jth part in the assembly direction of the component dk along the k direction with the ith part. The 
judgment is as follows: =0

kijdI , indicating that the jth part has no interference with the ith part in the 
direction of dk; =1

kijdI , indicating that the jth part interferes with the ith part in the direction of dk, in 

which { }, ,kd X Y Z∈ ± ± ± . The interference between the part Pj and the part Pi along the direction of 
dk assembly is the same as that the part Pi and the part Pj along the direction of -dk, namely

k kijd ijdI I−= , 
it is only necessary to consider the interference matrix along the positive direction of the three axes. 
Let ( ) ( )( )1, 2, ,6k iZ P k ∈ … be the sum of the interference values of the parts Pi along the dk direction 
and the assembled parts. The expression is as follows: 
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Whether the part Pi can be assembled along the dk direction is as follows: ( ) 0k iZ P = means that the 

part Pi can be assembled in the dk direction; ( ) 0k iZ P ≠ means that the part Pi cannot be assembled in 
the dk direction. 
For any assembly sequence {P1, P2, …Pn}, let Zg be the number of parts for which this sequence 
cannot be assembled. If there is no feasible assembly direction for part Pi, then Zg+1. Therefore, Zg 
can be used as a quantitative indicator to measure the geometric feasibility. 
The stability for assembly sequence. The reliability of assembly operation and the complexity of 
fixture and tool are embodied in the stability of operation which is composed of the stability of 
gravity direction of assembly and the connection relationship between parts. To quantify the 
stability of the assembly sequence, a connection matrix C is established. Cij represents the 
connection relationship between the parts Pi and Pj. The judgment basis is as follows: Cij = 0, Pi and 
Pj do not have a connection relationship; Cij=1, Pi and Pj are connected stably Pj is stable with 
fixtures; Cij=2, Pi and Pj are stably connected and Pi is stable with fixtures. Pj is stable on Pi under 
gravity. A stable connection refers to the connection of a part with a forced constraint, such as a 
interference connection or a fastener connection between the shaft of a hole. The quantitative 
expression of the stability index Zc is as follows: 
 

  
2

n

c i
i

Z U
=

= ∑                                                                    (8) 

 
Where n is the total number of assembly parts and Ui is the assembly stability of part Pi. If Cji 
( )1 1j i≤ ≤ − contains 2, Ui=2; if Cji ( )1 1j i≤ ≤ − does not contains 2 but contains 1, then Ui=1; If 

Cji ( )1 1j i≤ ≤ − only contains 0 element, then Ui=0, obviously 0 2 2cZ n≤ ≤ − . 
The polymerization for assembly sequence. The aggregation is usually measured by the number 
of assembly tool changes. The set assembly tool Pi is set to T(Pi) and the assembly tool is changed 
to Zt. For a given assembly sequence {P1, P2, …, Pm, Pm+1, …, Pn}, if ( ) ( )1

m

1
i

i

T P T P
=

=I , when 

assembling P1, P2, …, Pm, assembly tool does not change; if ( ) ( )1

m

1
i

i
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assembly tool needs to be changed once when assembling the part Pm+1, then Zt+1. 
The frequency of direction changes. According to the interference matrix, the feasible assembly 
direction of parts Pi is as follows: 
 

( ) ( ){ }D | 0i k k iP d Z P= =                                                         (9) 
 
For any feasible assembly sequence {P1, P2, …, Pm, Pm+1, …, Pn}, solving the minimum number of 
assembly direction change Zd assembly sequence, if ( )

m

1i
iD P

=

Φ=I , the direction of assembly is not 

changed when assempling P1, P2, …, Pm; If ( )
m

1i
iD P

=

Φ≠I , and ( )
m+1

1
i

i

D P
=

Φ=I , the assembly parts Pi+1 need 

to change a direction, then Zd + 1. 
Objective function structure. The objective function is determined by weighting the above 
evaluation indexes: 
 

F +g g c c d d t tZ Z Z Zω ω ω ω= + +                                                   (10) 
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In which, ωg, ωc, ωd, ωt are the evaluation weight coefficients. Obviously, the lower the F value, the 
better the assembleability is.  

The operation and steps of discrete Bat algorithm (DBA) 
The DBA formula is not suitable for assembly sequence planning. In this paper, a discrete bat 
algorithm formula is proposed to solve the problem. 
Key technologies of DBA solution to ASP. In the ASP problem, the DBA related operation is as 
follows: 
  Redefinition of position and velocity. Each bat's position is defined as an initialized 
n-dimensional vector. Each bat's position corresponds to an assembly sequence. The ith 
is ( ) { }1 2, , , , , 1, 2, ,T

i i i ik in ikX x x x x x n= … … ∈ … , where n is the total number of parts and xik is the 
part number. The bat speed Vi is defined as a sequence for adjusting the transformation order of 
parts, that is, Vi stores switching sequences. 
  Subtraction operation between positions. The speed is reduced between positions, and the 
expression is as follows:  
 

Subxx = Xj - Xi                                                               (11) 
 
Define the number of differences between the two assembly sequences as r (initial value r = 0), and 
compare the sequence elements Xi and Xj correspondingly. For the kth (1≤k≤n) element, if xik ≠ x 

jk then r + 1, and ( ) [ ]xxSub { , | , , m 1, }im jm im ik jm jksx sx sx x sx x r= = = ∈ , otherwise, no record. That is, 
Subxx inherits valid elements from Xi, Xj. 
  Addition operation of velocity V0 and velocity Subxx. Let bat initial speed V0, bat frequency fi, 
definition velocity V0 and velocity Subxx get a new speed Vi, the specific method is as follows: For 
V0, Subxx merge { }'

0 xx,SubiV V= , choose l row value randomly in '
iV  (l=round (step×n×fi)+1, round 

means rounding, step > 0 means step size, n means total number of parts) to constitute Vi, and it is 
easy to know that Vi is a matrix of l row and 2 columns. After this operation the update of Vi can be 
completed. 
  Addition operation of position Xi and velocity Vi. The kth (1<k<l) row element (v1,v2) 
(v1∈[1,n],v2∈[1,n]) of Vi is used as the exchange sequence number, that is, the position of the v1th 
element and the v2th element in the exchange assembly sequence Xi. The addition of position Xi and 
velocity Vi completes the exchange of elements in Xi one by one with each element in Vi as an 
exchange order, thereby realizing the update of position Xi. 
  Update of local position. The local position updating adopts the reverse order arrangement of the 
assembly sequence subsequence [13], and randomly arranges any subsequence in the assembly 
sequence Xi, which enhances the population diversity and accelerates the convergence speed. 
After the above operation, the core formulas Eq.2, Eq.3, Eq.4 of bat algorithm can be discretized. 
Operational steps of DBA. The steps of applying the DBA in ASP in this paper are as follows: 
  STEP1. Get the total number of assembly parts, assembly information matrix; initialize bat 
population number Popsize, DBA parameters pulse emission loudness Ai , pulse rate r, their update 
parameters α and γ, and algorithm maximum iteration number Nmax. The evaluation coefficient ωg, 
ωc, ωd, ωt of fitness function is given. Randomly generate the position velocity of the initial 
population, calculate the fitness function value Fn, and find the assembly sequence x*with the least 
fitness. 

STEP2. Determine whether to satisfy the algorithm's end condition. If so, stop iteratively 
changing to step8. Otherwise, go to step3. 

STEP3. According to the operation method above, follow the new Xi and Vi. 
STEP4. To determine whether rand >r is true or not, the assembly sequence subsequence is 

reversed and a new sequence is formed, otherwise, the assembly sequence is turned to step5. 
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STEP5. Calculate the Xnew fitness value Fnew, and determine if Fnew<Fn and rand<Ai are both true. 
If it is established, then let Xi=Xnew and update ri, Ai according to Eq.5 and Eq.6, otherwise, go to 
step6. 

STEP6. When all assembly sequences complete an iteration, update the current best assembly 
sequence. 

STEP7. Increase the number of iterations and switch to step2. 
STEP8. Output the relevant information of the optimal assembly sequence: assembly sequence, 

assembly direction, fitness function value. 
Where, rand is a random number distributed uniformly on [0, 1]. 

Case study and analysis 
In order to verify the validity of the algorithm, a test program is written in MATLABR2012a. The 
CPU model of the program is Intel Core i5430, the main frequency range of CPU is 2.27 ^ -2.53 
GHz, the memory is 6 GB, and the Windows8 64-bit operating system is used. The assembly 
sequence planning of top drive blowout preventer containing 10 parts (Figure 1 and assembly tool 
table as shown in Table 1) is taken as an example. The weighting factor for this assembly fitness 
function was evaluated as ωg=0.5, ωc=0.25, ωd=0.15, ωt=0.1. 

 
Figure 1 An assembly consisting of 10 parts 

Table 1 Tool type of each part in the assembly 
Tool type of each part in the assembly 

Part no. 1 2 3 4 5 6 7 8 9 10 
Tool type 1 2 1 2 1 1 1 2 1 2 
 
Test 1: the effects of population size. In this paper, the relationship between the optimal fitness of 
the assembly sequence and the number of the population is analyzed by tests on the population size of 
200,300,400,500 and 600 when the parameters of the algorithm are the same. The results of the 
algorithm are as shown in Table 2, and the optimal assembly sequence is as shown in Table 3.  

Table 2 Results of 50 times for different population size 
Population size 100 200 300 400 500 600 
Iterations 500 500 500 500 500 500 
Number of executions 50 50 50 50 50 50 
Average running time [s] 4 12 25 39 60 83 
Average optimization algebra. 17 53 59 96 135 214 
Maximum fitness 5.35 5.1 4.95 4.85 4.85 4.85 
Optimal fitness 4.85 4.85 4.85 4.85 4.85 4.85 
Optimal probability of occurrence [%] 4 20 28 42 70 98 
 
After several tests, the optimal fitness value of the assembly sequence is 4.85, and 6 optimal 
assembly sequences are found, and the 6 sets of optimal assembly sequences are all in line with the 
engineering practice. Table 2 shows that with the increase of population size, the optimization 
ability of the algorithm increases gradually, and the maximum fitness value obtained from each test 
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approximates to the optimal fitness value, and finally is equal. When the population size reaches 
600, the probability is as high as 98%. However, with the increase of population size, the average 
running time increases, but even when the population size is 600, the optimization rate of the 
algorithm is close to 100%, and the average time of the program is only 83s. If the population size 
is increased, the running time of the program will be increased, which will lead to a long time 
consuming and lower efficiency of optimization algorithm. Therefore, when the population size of 
the assembly sequence is set to 600, the optimization ability of the discrete bat algorithm reaches an 
ideal state. 

Table 3 Optimal assembly sequence 
Optimal assembly sequence 

Sequence 1 3 1 2 5 4 6 7 9 10 8 
Sequence 2 3 5 4 1 2 6 9 7 10 8 
Sequence 3 1 3 2 5 4 6 7 9 10 8 
Sequence 4 1 3 2 5 4 6 7 10 9 8 
Sequence 5 5 3 4 1 2 6 7 9 10 8 
Sequence 6 5 3 4 1 2 6 7 10 9 8 
 
Test 3: the effects of different parameter settings. In practical applications, the update parameters 
α and γ of the loudness Ai and the pulse emission rate r have not been determined yet. According to 
experience, values are generally taken within (0, 1) [10]. 
The higher the frequency fi (fi ∈[fmin, fmax]), the shorter its wavelength and the shorter the flight 
distance. In the actual solution process, the value of fi can be determined according to the size of the 
problem domain [9]. The above four factors are divided into three levels (as shown in Table 4), and 
an orthogonal test table L9 (56) is used to test the algorithm (as shown in Table 5). After analysis of 
the three groups are more ideal parameter values, respectively α=0.5, γ=0.5, fmin= 2, fmax = 3 (Group 
5 test), α=0.5, γ=0.9, fmin = 0, fmax = 4 (Group 6 test) and α=0.9, γ=0.9, fmin=1, fmax=3 (Group 9 test). 

Table 4 Parameter factors and their corresponding levels 
Corresponding 

levels 
Parameter 

α γ fmin fmax 
1 0.1 0.1 0 3 
2 0.5 0.5 1 4 
3 0.9 0.9 2 5 

Table 5 Orthogonal test table 
Test 
NO. 

Corresponding levels Results 
α γ fmin fmax T [s] I F 

1 1 1 1 1 93 125 4.85 
2 1 2 2 2 118 118 4.85 
3 1 3 3 3 142 136 4.85 
4 2 1 2 3 132 152 4.85 
5 2 2 3 1 118 82 4.85 
6 2 3 1 2 112 85 4.85 
7 3 1 3 2 135 204 4.85 
8 3 2 1 3 142 116 4.85 
9 3 3 2 1 102 83 4.85 

Note: T in the table represents the average running time, I represents the optimal solution algebra, 
and F represents the optimal fitness value. 
 
Set up the test again according to this group of parameters. The test adopts control variables, 
increasing the number of tests, and small steps (α and γ are each taken as 0.1 steps), so as to analyze 
the relationship between the parameter change and the algorithm's ability to search for optimization. 
And more ideal parameter values, the test results shown in Fig. 2. From Fig. 2, we can see that as 
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the value of α gradually increases, the number of iterations with the optimal value decreases, 
indicating that the DBA algorithm converges faster. Because the algorithm can find the optimal 
solution within the range of [0.1, 0.9] in the orthogonal test, the maximum value of α within this 
range will not cause the algorithm to converge too fast and not find the optimal value. With the 
increase of γ, the number of iterations with optimal value decreases, the DBA algorithm converges 
faster, and the same value of γ in the range of [0.1, 0.9] makes the algorithm converge faster but 
does not make the algorithm premature. Therefore, it is more ideal to take α=0.9, γ=0.9, fmin=1 and 
fmax=3 for the parameters of this assembly sequence DBA algorithm. 

 
Figure2 The relationship between α and γ values and the average running algebra of optimal results 
Test 4: Comparison between the DBA approach and the PSO approach. The discrete bat 
algorithm (DBA) is compared with the particle swarm optimization algorithm (PSO), which is 
commonly used in assembly sequence. The test still uses the assembly of top drive blowout 
preventer as an example, and the discrete bat algorithm adopts the near optimal parameter above. 
The parameters of PSO algorithm are set with recommended value [14] (ω=0.729, c1=c2=1.49445). 
The two algorithms run 50 times each, and the results are shown in Table 6, Fig. 3. 

Table 6 Comparison of algorithm test results 
 Optimal 

fitness 
Optimal probability of 

occurrence [%] 
Average running 

time [s] 
Average 

optimization algebra. 
DBA 4.18 98 83 260 
PSO 4.18 64 112 368 
 

 
Figure 3 The relationship between the average fitness of two algorithms and the number of 

iterations for assembly sequence 
Table 6 shows that both algorithms find the optimal fitness value in the test, but the optimization 
rate of DBA is as high as 98%, which is much higher than that of particle swarm optimization 
algorithm, and the average running time of DBA and the average optimization algebra are lower 
than that of PSO algorithm. Obviously, the efficiency of DBA optimization is higher than that of 
PSO algorithm. From Fig 4, it can be seen that neither of the two algorithms is trapped in local 
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optimum, but the convergence speed of DBA is faster than that of PSO algorithm. The analysis 
shows that the DBA proposed in this paper is effective in solving the ASP problem. 
It is important to note that this paper assumes that the assembly is carried out in the positive and 
negative direction of the XYZ axis. If both linear and rotational motions occur in the assembly 
process, it will be simplified to a linear motion only along the axis of the assembly. Because bolts 
and other fasteners are usually assembled in parallel mode in the process of automatic assembly, the 
assembly body containing fasteners such as bolts is used as sub-assembly body to participate in 
assembly. 

Conclusions 
According to the characteristics of assembly sequence planning problem, this paper redefines the 
related operations of bat algorithm, which is often used to solve continuous space optimization 
problem, and then proposes a discrete bat algorithm for assembly sequence planning. By using 
orthogonal test and variable control method, the parameters of the algorithm for assembly sequence 
planning are determined, and the comparison of tests shows that the proposed algorithm is superior 
to the particle swarm optimization algorithm. 
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