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Abstract. The first integral method is applied to solve complex Ginzburg-Landau equation in this 
work. The evolution solutions for the equation are obtained. This method is based on the theory of 
commutative algebra, which can be applied to nonintegrable equations as well as to integrable ones. 
The first integral method supplied an effcient way to obtain traveling wave solutions of some nonlinear 
partial differential equations. This approach can also be applied to other nonlinear fractional differential 
equations. 

Introduction 
Nonlinear partial differential equations are widely used to describe complex phenomena in various 
fields of science. The generalized complex Ginzburg-Landau equation is one of the most-studied 
nonlinear equations in the physics community, which arises from a wide variety of fields, such as 
quantum field theory, superconductivity, superfluidity, Bose-Einstein condensation, liquid crystals and 
strings in field theory[1, 2, 3]. In optics, this equation (or a generalization of it) describes the essential 
features of processes in lasers[4, 5, 6, 7, 8]. Some of the numerical techniques designed 
under the non-standard methodologies have been popularized in the literature: tanh-sech method[9, 10, 
11], Jacobi elliptic function expansion method[12], hyperbolic function method[13], Riccati equation 
method[14], F-expansion method[15]. The problem of finding first integrals of ordinary 
differential equations (ODEs) was initially considered by Darboux and by Lie.[16]  

The first integral method is based on the ring theory of commutative algebra[17], which is widely 
used by many such as in [18,19] and by the reference therein and this approach can also be applied to 
other nonlinear fractional differential equations. We applied the first integral method for the complex 
Ginzburg-Landau equation and the evolution solutions 

The first-integral method  
For a given nonlinear evolution equation with two variables in the form 
                                                                                                            (1) 
where u = u(x; t), P is a polynomial u and its derivatives. Using a wave variable ξ = x+ λt, Eq.(1) is 
changed into ordinary differential equation, which can be rewritten as 

                                                                      (2) 
The prime in Eq.(2) denotes the derivative with respect to the same variable ξ. The equation u(x, t) 

= f (ξ) is supposed to be the solutions of Eq.(2). Then, a new independent variable is read as the 
following Eq.(3), which leads a system of nonlinear ordinary differential equations Eq.(4). With the 

 

                                                                     (3) 

                                                   (4) 
same conditions, the general solutions to Eq.(4) can be obtained directly by employing the qualitative 
theory of ordinary differential equations [17]. However, in general, it is really difficult for us to realize 
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this even for one first integral, because for a given plane autonomous system, there is no systematic 
theory that can tell us how to find its first integrals, nor is there a logical way for us to tell what these 
first integrals are. Fortunately, the first integral for Eq.(4) is obtained by employed the Division 
Theorem, which can help us obtain one first integral for Eq.(4) which reduces Eq. (2) to a firstorder 
integrable ordinary differential equation. The evolution solution for Eq.(1) is finally obtained by solving 
the first-order integrable ordinary differential equation. 

The Division theorem for two variables in the complex domain C is read as: Division theorem: 
Suppose that G1[w; z], G[w; z] are polynomials in C[w; z] and G1[w; z] is irreducible in C[w; z]. If 
G[w; z] vanishes at all zero points of G1[w; z], then there exists a polynomial G2[w; z] in C[w; z] such 
that  

G[w; z] = G1[w; z]G2[w; z]                                                        (5) 

Complex Ginzburg-Landau Equation 
The The complex Ginzburg-Landau equation, which is one of the most-studied nonlinear equations in 
the physics community, is studied in this section. The complex Ginzburg-Landau equation is read as:  

                                             (6) 
where a and b are constant parameters, u is the function of x and t. By using the transformation u(x; t) 
= eθ f (ξ), ξ = x + λt and θ = αx + βt, where λ, α, and β are constants, the ordinary differential equation 
transferred from Eq.(6) is obtained 

                      (7) 
With the help of Eq.(3), we obtain 

                                           (8) 
According to the first-integral method and Division theorem, we suppose that X(ξ) and Y(ξ) are the 

nontrivial solutions of Eq. (8). G(X; Y) can be expressed as  The above expression is 
an irreducible polynomial in the complex domain C[X; Y], then the above equation with parameter 
ξ is rewritten as 

                                                   (9) 
where ai(X(ξ)), (i = 0; 1; 2; :::m) are polynomials of X and am(X(ξ))≠ 0. Eq.(9) is called the first integral 
for Eq.(8). According to the Division Theorem and the derivative of G, a polynomial g(X)+h(X)Y in the 
complex domain C[X; Y] must meet the relationship 

                        (10) 
Here, two different cases, m = 1 and m = 2 are assumed in Eq.(9) in this example. 

Case A. Expanding Eq.(10) and equating the coefficients of Yi,(i = 0; 1; 2) on both side of with the  
parameter m = 1, we have Eq.(11,12,13) 

                                                                       (11) 

                      (12) 

                    (13) 
From Eq.(9), we known that ai(X) (i = 0, 1) are polynomials, then a1(X) is constant and h(X) = 0 are 

deduced from Eq.(11). For simplicity, a1(X) take the form a1(X) = 1. Balancing the degrees of g(X) and 
a0(X), we conclude that deg(g(X)) = 1 only. Suppose that g(X) = A0 + A1X with parameter A0 and A1 to 
be determined, then we find a0(X) read as 
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                               (14) 
where R is some an integration constant. Substituting a1, g and a0 into Eq.(13) and setting all the 
coefficients of powers X to be zero, then we obtain a system of algebraic equations and by solving it, 
we obtain 

                         (15) 
where λ, b, α, a and a ≠ i are constants. Using the conditions Eq.(15) and Eq.(9), we obtain the 
evolution solution of the Eq.(6) 

      

                                                                           (16) 
    Case B. Equating the coefficients of Yi,(i = 0; 1; 2; 3) on both side of Eq.(10) with m = 2, we obtain 

                                                                                                    (17) 

                                                             (18) 

        (19) 

                                                      (20) 
Since ai(X) (i = 0,1, 2) are polynomials, a2(X) is constant and h(X) = 0 are yielded from Eq.(17), we set 
a2 = 1 as usual. Balancing the degrees of g(X), a1(X) and a2(X), we conclude that deg(g(X)) = 1, 
therefore we have: g(X) = A1X + A0 is given. a1(X) is obtained from Eq.(18) as follow 

                                                               (21) 
where R is an integration constant. 

         
(22)           
Substituting a2, a1, a0, g, into Eq.(9) and setting all the coefficients of powers X to be zero, then we 
obtain a system of nonlinear algebraic equations and by solving it, we obtain 

                                                       (23) 

                                                      (24) 
where a ≠ i, b, and α are constants. Using the conditions Eq.(22)(23) and Eq.(9), we obtain the 
traveling wave solution of the Eq.(6) 

         (25)                      
                                                                                                (26) 

 

                    (27) 
                                                                                                  (28) 

Summary 
The evolution solutions for thecomplex Ginzburg-Landau equation are obtained by using the first 
integral method, which is based on the theory of commutative algebra. The simulation figures are 
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shown with the corresponding parameters. The first integral method, which can be applied to 
nonintegrable equations as well as to integrable ones, is a standard, direct and computerizable method. 
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