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Abstract. In this paper, we present an improved method for obtaining quasi-cyclic low-density 
parity-check (QC-LDPC) codes of larger length by combining some component QC-LDPC codes of 
smaller length. Large girth can be obtained by carefully designing one large girth component code of 
smaller length. The other component codes are properly designed to obtain a lot of QC-LDPC codes 
with much few short cycles. Simulations show that compared with CRT based QC-LDPC codes and 
PEG based QC-LDPC codes, the proposed QC-LDPC codes have much less short cycles and better 
performance. 

Introduction 
Low-density parity-check (LDPC) codes are considered as a class of error-correcting codes with 

near-optimum performance under belief-propagation (BP) decoding. Based on methods of 
construction, LDPC codes can be divided into two categories: random LDPC codes [1] and structured 
LDPC codes [2]. Although random LDPC codes of large length provide excellent performance, 
structured LDPC codes can lead to much simpler implementations, particularly for encoding. 
Quasi-cyclic (QC) LDPC codes are the most promising class of structured LDPC codes due to their 
ease of implementation and excellent performance. 

Since the short cycles may degrade the performance of BP decoding, good LDPC codes tend to 
have large girth and a small number of short cycles. A combining method to design QC-LDPC codes 
based on Chinese Remainder Theorem (CRT) was first proposed in [3]. Then, a large girth CRT 
(LG-CRT) method [4] was presented to improve the performance by enlarging the girth of the code. In 
addition, Z. Li et al. [5] added a constraint into original progressive edge-growth (PEG) algorithm to 
construct structured LDPC codes, named PEG-QC LDPC codes. To improve the PEG-QC algorithm, 
[6] proposed a modified PEG-QC method to construct girth-maximized QC-LDPC codes 
(GM-PEG-QC). However, large girth is not enough to judge the quality of a LDPC code. The number 
of short cycles is another important metric for quality. In this letter, we propose an improved 
combining method to construct better QC-LDPC codes, which can ensure as few short cycles as 
possible, while maintaining the large girth. 

The rest of this paper is organized as follows. Section II presents some definitions related to 
QC-LDPC codes. The improved combining method is proposed in Section III. The performance of 
several QC-LDPC codes is verified by simulations in Section IV. Finally, Section V concludes the 
paper. 

QC-LDPC Codes 

A binary QC-LDPC code can be defined by its parity-check matrix H, which consists of q×q CPMs 
or zero matrices as sub-matrices as follows: 
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where aij ∈  {-1, 0, 1, ..., q-1} and 
ijaI  (1 ≤ i ≤γ , 1 ≤ j ≤ ρ ) is a q×q CPM if aij≠-1. I0 is an identity 

matrix of size q×q and 
ijaI  can be obtained by cyclically shifting the rows of I0 to the right by aij times, 

and the zero matrix is denoted by I-1. If there is no zero sub-matrix, the row and column weights of such 
a code are n and m, respectively. The null space of H gives a ( , )γ ρ -regular QC-LDPC code. In the 
following, we consider these ( , )γ ρ -regular QC-LDPC codes.  

The shifting matrix ( )S H  of H is denoted as 

  ( )

11 12 1

21 22 2

1 2

a a a
a a a

a a a

ρ

ρ

γ γ γρ

 
 
 =
 
 
  

L

L

M M O M

L

S H                                                    (2) 

It can be seen that H can be easily obtained by replacing each element aij of ( )S H  by 
ijaI , which is 

called matrix extension. Since the sub-matrix 
ijaI  has exactly one “1” in each row and column and “0”s 

elsewhere, a cycle of length 2l in the Tanner graph of H can be represented as a chain 
1 1 1 2 2 2 1 1 1

( , , ,..., , )
lm n m n m n m n m na a a a a  in the shifting matrix ( )S H . The number of cycles in the QC-LDPC codes 

can be easily calculated through the smaller shifting matrix ( )S H , which satisfies the following 
theorem. 
  Theorem 1 ([7]) Denote a 2l-cycle in ( )S H  as 

1 1 1 2 2 2 1 1 1
( , , ,..., , )

lm n m n m n m n m na a a a a . A necessary and 
sufficient condition for the existence of a 2l-cycle in H is 
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where 1 1,k k k km m n n+ +≠ ≠ , and 1 1lm m+ = . 

Improved combining method 

A CRT combining method was proposed in [3] to design QC-LDPC codes of larger length by 
combining QC-LDPC codes of smaller length. Let 1 2, , , sL L LL  be s  relatively prime integers, i.e., 
gcd( , ) 1k lL L = ， (1 , ,  )k l s k l≤ ≤ ≠ ，  and 1 2 sL L L L= L . Let  ( 1,2, , )k k s= LC  be a QC-LDPC 
code whose parity-check matrix kH  is a γ ρ×  array of k kL L×  circulant permutation matrices and 

( ) ( )( )k
ija=kS H  be the corresponding shifting matrix. A QC-LDPC code C  can be designed based on 

the CRT combining method. The procedure is given as follows.  
(1) Calculate the shifting matrix ( ) ( ), (1 ,1 )ija i jγ ρ= ≤ ≤ ≤ ≤S H  according to (4) below. 
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where k kL L L′ =  and 1modk k kA L L′ = . 
(2) The parity check matrix H of C  can be obtained by matrix extension. 
It can be seen from the CRT combining method that if there exists 6-cycle in kH  for all 1 k s≤ ≤  in 

the same position, H will have 6-cycle in that position [8]. It is known that the iterative decoding of 
LDPC codes converges to the optimal solution provided that the Tanner graph of the code is free of 
cycles. Girth and the number of the short cycles are both important metrics for quality of a LDPC code. 
To improve the performance of iterative decoding, we propose an improved CRT (ICRT) combining 
method to construct QC-LDPC codes with large girth and few short cycles.   

It can be seen from [3] that the girth of the constructed code based on CRT is larger than or equal to 
that of the component code. Consequently, we can translate a difficult problem of designing QC-LDPC 
codes with girth g into a task of designing one component QC-LDPC code with girth g [4]. And the 
other component codes can be carefully designed based on a progressive cycle growth (PCG) 
algorithm to ensure as few short cycles as possible. To construct a regular QC-LDPC code, whose 
parity check matrix H consists of γ ρ×  array of L L×  circulant permutation matrices, the proposed 
ICRT combining method is given as follows.   
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For simplicity, assume there are two component codes. Choose two relatively prime integers L1 and 
L2, i.e., 1 2gcd( , ) 1L L =  such that L = L1L2, and L1>L2. Construct an L1×L1 shifting matrix 1( )′S H , then 
carefully delete rows and columns of 1( )′S H  to eliminate cycles of length 2l < g based on the 
equations (3) and obtain a γ ρ×  shifting matrix 1( )S H . And the first component code 1C  with girth g 
is designed, and the shifting matrix 2( )S H  of the second component code 2C  is designed as follows.   

Firstly, all the entries of 2( )S H  are initialized to be ∞.  
Secondly, the entries in the first row and the first column of 2( )S H  are set to random values from 

{0,1,2,…, L2-1} and the other entries of 2( )S H  are carefully designed one by one from left to right 
and top to bottom. Each time a new entry is added to 2( )S H , the following procedure is performed: 
let this entry be taken over all elements from {0,1,2,…, L2-1} and count the number of cycles with 
length equals to girth g (g-cycles) in the current shifting matrix S(H) constructed based on the 
equations (4), then select the element corresponding to the minimum g-cycles as this new entry. If there 
are several elements corresponding to no g-cycle, count the number of (g+2)-cycles in the current 
shifting matrix ( )S H  constructed based on the equations (4), then select the element corresponding to 
the minimum (g+2)-cycles as this new entry. If there exists more than one element corresponding to the 
minimum g-cycles or (g+2)-cycles, then select one randomly as this new entry.   

Finally, construct the shifting matrix ( )S H  and the parity check matrix H by combining 1( )S H  and 
2( )S H  via CRT method. The null space of the obtained parity-check matrix H gives a QC-LDPC code 

C  with girth equals to or larger than g. It can be seen that 2( )S H  is carefully designed by adding the 
entries one after another provided the current parity check matrix H has minimal short cycles. And 
short cycles can be effectively avoided, and the parity-check matrix H with as few short cycles as 
possible is obtained.  In addition, if the first component code 1C  is designed to be an irregular 
QC-LDPC code, then the irregular QC-LDPC code C with the same degree distribution can be 
designed. By modifying parameters 1 2, , ,L L γ ρ  both regular and irregular QC-LDPC codes with 
flexible lengths and rates can be constructed. For irregular QC-LDPC codes, we assume all nodes 
corresponding to the same sub-matrices column or row block have the same degree. So this method 
can be extended to construct irregular QC-LDPC codes easily. 

Simulations 
All the following results are obtained by simulation for the Additive White Gaussian Noise (AWGN) 

channel, the Binary Phase Shift Keying (BPSK) modulation and BP decoding with a maximum of 50 
iterations.   

 
Fig1. Performance of QC-LDPC codes (1519, 

870) 

 
Fig2. Performance of QC-LDPC codes (4959, 

4176) and (4864, 4096) 
Choose the same parameters as the example in [4]: L1=31, L2=7, γ =3, ρ =7 and 1C  is a shortened 

array code with girth 8. A QC-LDPC code (1519, 870) with girth 8 is constructed by the ICRT 
method. Fig.1 shows the BER performance of the constructed code. For comparison purpose, the BER 
performances of the code designed by the LG-CRT method and the shortened array code are also 

Advances in Engineering Research, volume 164

691



 

shown. The code (1519, 870) designed by the LG-CRT method has 18879 8-cycles and only 1736 
8-cycles exist in the ICRT code. As shown in Fig.1, the QC-LDPC code designed using the ICRT 
method performs much better. At a BER of 10-6, the QC-LDPC code designed by the ICRT method 
outperforms that designed by the LG-CRT method by 1.6 dB.  

Choose the parameters as follows: L1=29, L2=9, γ =3, ρ =19 and 1C  is a shortened array code with 
girth 6. A QC-LDPC code (4959, 4176) with girth 8 is constructed by the ICRT method. In Fig. 2, the 
performance of the proposed QC-LDPC code (4959, 4176) is presented and the simulation result is 
compared with PEG-QC code [5] and MG-PEG-QC code [6] (4864, 4096). The girth of PEG-QC 
code is 6, and the girths of the other two codes are both 8, in addition, the code designed by the ICRT 
method has much fewer 8-cycles than the MG-PEG-QC code, which can improve the decoding 
performance. At a BER of 10-6, the QC-LDPC code designed by the ICRT method outperforms that 
designed by the MG-PEG method by 0.15 dB. 

Conclusions 
An improved combining method based on the CRT algorithm and the PCG algorithm for designing 

of QC-LDPC codes with large girth and few short cycles has been proposed. Based on the CRT 
combining method, the difficult problem of designing QC-LDPC codes with girth g is translated into a 
task of designing one component code with girth g. By properly designing the shifting matrices of other 
component codes based on the PCG algorithm, a lot of QC-LDPC codes with much less short cycles 
and better performance can be designed. Simulation results show that compared with LG-CRT 
method, PEG-QC method and MG-PEG-QC method, the proposed method can design QC-LDPC 
codes with much less short cycles and better performance. 

Acknowledgements 
This work was financially supported by the Natural Science Basic Research Plan in Shaanxi Province of 
China (2016JQ6033) and National Natural Science Foundation of China (61471294).  

References 
[1] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold: Regular and irregular progressive edge-growth 

tanner graphs, IEEE Trans. Inform. Theory, (2005), 51, p. 386-98.   
[2] J. Kang, Q. Huang, L. Zhang, B. Zhou, and S. Lin: Quasi-cyclic codes: an algebraic construction, 

IEEE Trans. Commun., (2010), 58, p. 1383-1396.  
[3] S. Myung and K. Yang: A combining method of quasi-cyclic LDPC codes by the Chinese 

remainder theorem, IEEE Commun. Lett., (2005), 9, p. 823-825. 
[4] M. Jiang and M. H. Lee: Large girth quasi-cyclic LDPC codes based on the Chinese remainder 

theorem, IEEE Commun. Lett., (2009), 13, p. 342-344. 
[5] Z. Li and B V K V. Kumar: A class of good quasi-cyclic low-density parity check codes based on 

progressive edge growth graph, Conference Record of the Thirty-Eighth Asilomar Conference 
on  Signals, Systems and Computers, Brest, (2004), p. 1990-1994. 

[6] P. Prompakdee, W. Phakphisut and P. Supnithi: Quasi cyclic-LDPC codes based on PEG 
algorithm with maximized girth property, International Symposium on Intelligent Signal 
Processing and Communication Systems, Chiang Mai, (2011), p.1-4. 

[7] M P C. Fossorier: Quasi-cyclic low-density parity-check codes from circulant permutation 
matrices, IEEE Trans. on Inform. Theory, (2004), 50(8), p. 1788-1793. 

[8] Y. Liu, X. Wang, R. Chen: Generalized Combining Method for Design of Quasi-Cyclic LDPC 
Codes, IEEE Commun. Lett., (2008), 12(5), p. 392-394. 

Advances in Engineering Research, volume 164

692




