

Hadoop Performance Tuning based on Parameter Optimization

Wei Wang1,a*, Yong Shi1,b, and Xin Liu1,c, Yihong Feng1,d, and Ning Tao1,e

1 BIM Computing Research Center, Shenyang jianzhu University, Shengyang, 110168, China

a519836646@qq.com, b674365154@qq.com, c6620274@qq.com,

d1009523744 @qq.com, e23010150@qq.com

 * The Corresponding Author

Keywords: Hadoop; TeraSort; Parameter optimization; Performance tuning

Abstract. In order to better verify that Hadoop performance can be improved through optimization

of parameters, we can use the following test methods: benchmarking, stability testing, high
availability testing, scalability testing, and security testing. In this paper, the benchmark test method

is used to verify the optimization of parameters and to optimize the performance of Hadoop. This
article mainly focuses on the 17 parameters in Tab.1. The optimization results are shown in Tab.3.

The optimization of the parameters was verified by the execution time of the TeraSort algorithm in
the benchmark test. During the experiment, the CPU and memory utilization rate, disk IO and

network IO throughput and other indicators were collected. Fig.1-3 fully illustrates the comparison
between Hadoop and TeraSort algorithm after parameter default value and parameter adjustment.

The experimental results show that after the Hadoop parameters are adjusted and optimized, the
Hadoop performance tuning is achieved under certain conditions.

The Introduction

The big data software platform is mainly composed of distributed file systems (such as HDFS),

distributed computing systems (such as MapReduce), NoSQL databases (such as HBase),
distributed data warehouses (such as Hive), and distributed databases (MPP)

[1,2]
.

Table 1 Hadoop parameter list

No category parameter name default

1 YARN yarn.nodemanager.resource.memory-mb 5G

2 YARN yarn.nodemanager.resource.cpu-vcores 8

3 MapRedcue mapreduce.job.reduces 1

4 HDFS dfs.blocksize 128M

5 MapRedcue mapreduce.map.memory.mb 1G

6 MapRedcue mapreduce.map.java.opts 756M

7 MapRedcue mapreduce.task.io.sort.mb 200M

8 YARN yarn.scheduler.maximum-allocation-mb 2G

9 MapRedcue mapreduce.map.output.compress FALSE

10
MapRedcue mapreduce.map.output.compress.codec org.apache.hadoop.io.co

mpress.DefaultCodec

11 MapRedcue mapreduce.reduce.memory.mb 1G

12 MapRedcue mapreduce.reduce.java.opts 756m

13 MapRedcue mapreduce.reduce.shuffle.input.buffer.percent 0.7

14 MapRedcue mapreduce.output.fileoutputformat.compress FALSE

15
MapRedcue mapreduce.output.fileoutputformat.compress.codec org.apache.hadoop.io.co

mpress.DefaultCodec

16 MapRedcue mapreduce.job.reduce.slowstart.completedmaps 0.05

17 MapRedcue mapreduce.job.reduces 25

8th International Conference on Social Network, Communication and Education (SNCE 2018)

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Computer Science Research, volume 83

577

mailto:b674365154@qq.com
mailto:c6620274@qq.com

Provides storage, management and computing capabilities for big data. The big data software

platform mainly includes open source Hadoop, Spark, etc., and is generally deployed on a general
hardware platform.

Because Hadoop itself contains many parameters, the relationship between parameters is also
more complicated. After simple experimental verification, this paper mainly optimizes the 17

parameters in Tab.1, and the parameter optimization is to follow the order, superimposed way to
achieve Hadoop performance tuning

[3]
.

Research on Experiment Design and TeraSort Algorithm

Experiment Design. In order to better verify that Hadoop performance can be improved through

optimization of parameters, we can use the following test methods: benchmarking, stability testing,
high availability testing, scalability testing, and security testing. In this paper, the benchmark test

method is used to verify the optimization of parameters and to optimize the performance of Hadoop.
Benchmarking is an activity that measures and evaluates software performance metrics. At a

time, benchmarks can be used to establish a known level of performance (referred to as the
baseline), and a benchmark test can be performed after the hardware and software environment of

the system has changed to determine the effect of those changes on performance.
There are a variety of test methods for benchmarking. such as: TestDFSIO, TeraSort,

WordCount, MRBench, NNBench, simulator HDFS daily import/export, DistCP and so on.
According to Hadoop's Map Reduce process, this paper mainly uses the TeraSort algorithm to

verify that the 17 parameters in Tab.1 are adjusted, and the Hadoop performance is affected and
optimized under specific conditions. The Hadoop test environment is based on the pattern of 1

Name Node and 4 Date Node.
TeraSort Algorithm. TeraSort's work principle requires the following steps. Firstly, sampling.

Secondly, map marked the data record (identify the reduce number belongs). Then reduce local
sort

[4]
. At the end, output sequentially.

1TB ordering is commonly used to measure the data processing capabilities of a distributed data
processing framework. TeraSort is a sorting job in Hadoop. In 2008, Hadoop won the first place in

the 1TB sorting benchmark assessment, which took 209 seconds. TeraSort cleverly uses Hadoop's
MapReduce mechanism to achieve the purpose of the Sort, and the perfect combination with the

Hadoop mechanism may be an important reason for its excellent sorting results. And because of this,
we can use TeraSort to test Hadoop on the cluster, which will have high test utilization value.

Terasort's feature is hybrid, its data type is text, and the data source required for the test process
is Hadoop's own TeraGen generation. TeraSort is just a small tool and may be insignificant

compared to the production application. But a gadget, if it can be excavated, will have great value
behind it. Especially for testing, if there is more knowledge of background knowledge, a gadget can

be converted into many convenient and valuable test cases. And if you can infer something from a
gadget, it can also provide value for testing elsewhere.

Table 2 Experimental procedure

step content

1
hadoop jar /usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar teragen

-Dmapred.map.tasks=512 5368709120 /terasort/input1G

2 Hadoop fs –du –h /terasort

3 echo 3 > /proc/sys/vm/drop_caches

4
hadoop jar /usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar terasort

-Dmapred.reduce.tasks=95 /terasort/input1G /terasort/output

5
hadoop jar /usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar teravalidate

/terasort/output /terasort/01-validate

6 hadoop fs -ls /terasort/output

7 hadoop fs -cat /terasort/01-validate/part-r-00000

Advances in Computer Science Research, volume 83

578

According to the complex relationship between them, the 17 parameters in Tab.1 are divided into

7 groups of parameter groups for adjustment. From the first group to the seventh group, the
adjustment parameter values are accumulated in sequence, see Tab.3 for details. Verified by the

TeraSort algorithm the correctness of parameter adjustment. After each adjustment of the
parameters, we need to execute the TeraSort algorithm on Hadoop. The execution steps of the

TeraSort algorithm are detailed in Tab.2. During the experiment, the execution time of the statistical
algorithm is referenced. The PAT (Performance Analysis Tool) tool was used to monitor the CPU,

memory, disk IO and network IO of the algorithm during the execution of the algorithm.
The single file size in the experimental data is 1G, the number of files is 512, and the total file

size is 512G.

Test and Analysis

In Tab.3, we can understand that there are mutual influences between parameters, so we try to
divide them into 7 groups for testing. The test found that as the parameters are adjusted, the

execution time of the TeraSort algorithm is decreasing, which fully explains the parameters. With
the optimization of parameters, the Hadoop performance is optimized.

Table 3 TeraSort algorithm execution time comparison

No parameter name default optimization Time

I

yarn.nodemanager.resource.memory-
mb 5G 100G

1535

s
yarn.nodemanager.resource.cpu-vcor
es 8 25

mapreduce.job.reduces 1 25

II dfs.blocksize
128M 1024M

1233

s

III

mapreduce.map.memory.mb 1G 4G

1126
s

mapreduce.map.java.opts 756M 3G

mapreduce.task.io.sort.mb 200M 2047M

yarn.scheduler.maximum-allocation-
mb 2G 4G

IV

mapreduce.map.output.compress FALSE TRUE

990s mapreduce.map.output.compress.cod

ec

org.apache.hadoop.io.
compress.DefaultCode

c Lz4Codec

V

mapreduce.reduce.memory.mb 1G 4G

973s
mapreduce.reduce.java.opts 756m 3G

mapreduce.reduce.shuffle.input.buffe

r.percent 0.7 0.9

VI

mapreduce.output.fileoutputformat.c
ompress FALSE TRUE

967s
mapreduce.output.fileoutputformat.c

ompress.codec

org.apache.hadoop.io.
compress.DefaultCode

c Lz4Codec

VII

mapreduce.job.reduce.slowstart.com
pletedmaps 0.05 0.8 871s

mapreduce.job.reduces 25 95

Advances in Computer Science Research, volume 83

579

According to Tab.3, we can understand that with the adjustment of the default value of 17

parameters, the execution time of the algorithm is obviously shortened. In the case that 17
parameters are all at the default value, the execution time of the TeraSort algorithm is 21776

seconds.
Fig.1 shows the comparison between the default value of the parameters and the execution time

of the TeraSort algorithm after parameter adjustment. After the parameters are optimized, the
execution time of the algorithm is greatly improved.

Fig.2 shows clearly parameters default values and adjusted during the execution of the TeraSort
algorithm, Hadoop compares the cpu and memory usage rate of the server, the occupancy rate of the

cpu is obviously increased, and the memory usage rate is also increased.
Fig.3 clearly shows the implementation of the TeraSort algorithm after parameter default value

and parameter adjustment. Hadoop significantly increased the server's DiskIO and NetworkIO
throughput.

They are verified that they can, to some extent, improve the performance of Hadoop.

Figure 1. Execution time Figure 2. Occupancy Figure 3. Throughput

Summary

This paper mainly validates the parameters of Hadoop through the running time of the TeraSort

algorithm in the benchmark test, and then optimizes the performance of Hadoop. Hadoop
performance tuning involves not only the performance tuning of Hadoop itself, but also the tuning

of systems, such as lower-level hardware, operating systems, and Java virtual machines. In order to
make better use of Hadoop, we should optimize the Hadoop parameters according to the actual

application scenarios and requirements so that the Hadoop performance can be optimized under
certain conditions.

Reference

[1] Saravanan S, Karthick K E, Balaji A, et al. Performance Comparison of Apache Spark and

Hadoop Based Large Scale Content Based Recommender System[M]// Intelligent Systems
Technologies and Applications. 2018:66-73.

[2] Ashlesha S, R. M. A Review of Hadoop Ecosystem for BigData[J]. International Journal of
Computer Applications, 2018, 180(14):35-40.

[3] Trivedi M, Nambiar R. Lessons Learned: Performance Tuning for Hadoop Systems[M]//
Performance Evaluation and Benchmarking. Traditional - Big Data - Interest of Things. 2017.

[4] Pahl C. Performance and Energy Optimization on Terasort Algorithm by Task Self-Resizing[J].
Information Technology & Control, 2014, 44(1):30-40.

Advances in Computer Science Research, volume 83

580

