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Abstract. Based on non-uniformly cell averaged-solution reconstruction, a class of high-order 
accuracy and high resolution conservative difference schemes is obtained for one-dimensional 

nonlinear hyperbolic conservation laws in this paper. Its idea is the following. The First, the 
computational interval is divided into pieces of nonoverlapping sub-intervals, and then each 

sub-interval is further subdivided into small-intervals by using Gauss-Lobatto and 
Gauss-Chebyshev partitions according to required accuracy. Cell averaged-solutions from these 

small-intervals are used to reconstruct solutions at small-interval boundaries. Furthermore the 
correction is introduced. The second, the approximate Riemann solver is used to compute numerical 

fluxs at small-intervals boundaries, and a high-order accurate fully discretization method is obtained 
by applying high-order Runge-Kutta TVD time discretization. Moreover, the non-oscillatory 

property of the scheme is proved. The extension to systems is implemented. Finally, several typical 
numerical experients are given. The numerical results verify high accuracy and high resolution of 

the resulting schemes.  

Introduction 

As we all know, for the initial value problem of nonlinear hyperbolic conservation laws, even if the 
initial condition is a fully smooth function, its solution may also include discontinuities, such as 

shock wave and contact discontinuity. Therefore, studying its numerical method with high-order 
accuracy and high resolution to enable it to efficiently capture shock waves and these 

discontinuities and avoid generating numerical oscillations in the vicinity of shock and discontinuity 
has always been one of the key issues in the research of computational mathematics and 

computational fluid mechanics. In 1983, A.Harten proposed the TVD(Total Variation 
Diminishing)[1] difference scheme, which made a new breakthrough in the construction of high 

resolution and non oscillatory difference schemes. In recent years, some successful difference 
methods have been developed, such as ENO, WENO, DG and so on. In this paper, a class of 

high-precision conservative difference schemes based on the average reconstruction of non 
isometric cells for solving one-dimensional nonlinear hyperbolic conservation laws is given. Its 

structural thought is to divide the computation interval into non-overlapping small intervals and 
then the non isometric division is carried out for small intervals according to the accuracy 

requirement of the scheme. The polynomial approximation is carried out by the cell mean value in 
the small intervals in order to reconstruct the point value at the interface of small intervals and 

correct it. Then the approximate Riemann solution is used to calculate the numerical flux on the 
small interval interface to obtained the semi-discrete scheme of the spatial direction. And then the 

high-order Runge-Kutta TVD time discretization is carried out to obtain a class of full discrete 
difference scheme with high order accuracy. In addition, the non oscillatory characteristics of the 

scheme under certain CFL conditions are proved. Finally, the high resolution characteristics of the 
scheme are verified by several standard examples. 
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Construction of Difference Schemes 

One dimensional scalar nonlinear hyperbolic conservation law equation is considered. 
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Among them, 0)('' uf , 0t , )(0 xu is a periodic function or a function with tight support, 

],[ bax . 

Construct the difference scheme by the following steps: 

The Division of Computational Intervals and the Definition of the Cell Mean Value. The 

computation interval ],[ ba is divided into N small cells ],[ 2/12/1  iii xxI  ),,2,1( Ni   that do 

not overlap each other. According to the requirement of the k-order accuracy of the scheme, each 

small cell iI is divided into k non-isometric small cells ],[ 2/1,2/1,,  jijiji xxG  ( kj ,,2,1  ), that is 
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2/1,2/1,,   jijiji xxx ,The subscript i  indicates the number of the small cells belonging to 

them. 

The cell mean value of the ),( txu in the small cell
jiG ,
is defined as: 
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The Reconstruction of the Point Value Based on the Cell Mean Value. In the small cell iI , 

the cell mean value jiu ,



 ( kj ,,2,1  ) in k  small cells
jiG ,
is used to construct the 1k -order 

interpolation polynomial )(xpi of ),( txu , that is )()()( k
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The 1k  point values on jiG ,
boundary

2/1, jix are reconstructed: )( 2/1,2/1,   jiiji xpu
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respectively the 
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numerical oscillation produced by the high order interpolation, the following correction is made: 
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The Determination of the Numerical Flux on the Small Cell Boundary. The approximate 

Riemann resolver is used to calculate the numerical flux in 
jiG ,
boundary

2/1, jix . The following 

chooses LLF type flux[5]: 
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Fully Discrete Scheme. The semi discrete scheme of the spatial k -order accuracy of the 

approximation equation (1) on the small cell
jiG ,
can be obtained from the above steps. 
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The fully discrete method(6) can be obtained by using the following third-order Runge-Kutta 

TVD time discrete method. 
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The following results can be obtained: 

Theorem 1. If CFL condition 
4
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  is satisfied, the fully discrete scheme (6) of the 

approximation equation (1) is the TVD scheme and satisfies the maximum principle in the average 

significance:
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Prove: The first form of the scheme (6), that is the Euler forward time discrete scheme, is 
rewritten as the following incremental form: 
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The formula(3) and formula (4) are put into the above formula, according to the definition of 

),,( zyxmm and )(uf  , we can obtain 02/1, jiC , 02/1, jiD ,  2/1,2/1,   jiji DC
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Therefore, when the CFL condition is satisfied, there is 12/1,2/1,   jiji DC , so that we can get 

that the Euler forward time discrete scheme is the TVD scheme, and there is:
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The Runge－Kutta TVD time discrete scheme(6) is exactly the convex combination of Euler 

forward time discrete scheme, which proves that the fully discrete scheme (6) is TVD scheme, and 

satisfies the maximum principle:
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Equation Set Condition 

The initial value problem of the one-dimensional nonlinear hyperbolic conservation law equation is 
considered. 
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Set the left and right eigenmatrix of the Jacobi matrix
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R . TmlllL ),,,( )()2()1(  . Then we generalize the difference scheme obtained above to the one 

dimensional hyperbolic conservation law equation set. The specific steps are as follows: 

It is the same as the step (1) of the scalar case. 

In small cell iI , the interpolation polynomial )(xpi is constructed in the same way as the scalar 

case (2). And also the value


2/1, jiu of the left and right sises of the boundary points of the 
jiG ,
 

inside the cell iI and the left and right boundary points of the iI is selected. The following correction 

is made for each characteristic variable Luv  according to the scalar case: 
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In the s-th feature domain, the approximate Riemann solution operator of the scalar case is used 
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The numerical flux at the boundary of the small cell jiG , is defined. 
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In small cell jiG , , a semi discrete scheme is obtained by calculation. 
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Then, the third-order Runge-Kutta TVD time discrete method is used to get the fully discrete 

method. 

Numerical Experiment 

Here we give several standard numerical examples to verify the high efficiency of this high 
precision scheme. 

In the following calculating examples, The following examples are calculated by third-order 
spatial discretization and third-order Runge-Kutta TVD time time discrete schemes. 

Example 1. The initial value problem of one dimensional inviscid Burgers equation[10]. 

Nonlinear scalar Burgers equation
 

0
)2/( 2











x

u

t

u
is considered. The initial condition is:

)sin(5.0)0,( xxu  . The boundary meets the periodic boundary conditions. The computation 

interval is ]2,0[ , and 90 grids are selected. Fig.1 gives the results calculated by the non-isometric 

division of the cell when /5.1t , and compares it with the exact solution. In the figure, the fine 

solid line is the exact solution, and the small circle point is the numerical solution. It is clear from 

the figure that the scheme in this paper can capture shock waves smoothly. 

 

Figure 1.  The calculation results of the Burgers equation when the time /5.1t  

Example 1. One dimensional shock tube problem 
Lax Problem 

The initial condition is: 









5.0),571.0,0,5.0(

5.0),528.3,698.0,445.0(
),,(

x

x
pu  . 

The computation interval is taken as [0,1], the characteristic decomposition method is used and 

300 grids are selected. Fig.2 (a, b) is the result of the density and velocity of the Lax problem at the 
time of 0.15 respectively. In the figure, the fine solid line is the exact solution, and the small circle 

is the numerical solution. From the figure, we can see that the scheme in this paper has better ability 
to distinguish shock waves, contact discontinuities and rarefaction waves, and does not produce any 

oscillation near shock waves and contact discontinuities. 
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Figure2(a).  Density distribution of Lax problem  Figure 2(b).  The velocity distribution of the 

Lax problem 

Conclusions 

The results of the above numerical calculation show that the high precision conservation difference 

scheme obtained in this paper has the characteristics of high efficiency resolution shock wave and 
contact discontinuity. In this paper, the calculation method of the subcell is used, and the same 

processing is made for each subcell, which can save more computational effort. In addition, the 
scheme in this paper is based on the reconstruction of the cell mean value, which is easily extended 

to the two-dimensional unstructured grid, and is used for the calculation of complex flow fields.  
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