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Abstract. In order to solve the problem of low efficiency in dealing with large numbers of 

queries in Hive, we propose a multi-queries region clustering (MQRC) method to improve the 

overall performance. This method makes effective use of the region overlap between queries 

and the region aggregation of query sets. By clustering the query set, we divide some queries 

with high similarity into a group, and share a materialized view within the group, which can 

effectively reduce the overhead of the query set. The experimental results show that, the method 

proposed in this paper is superior to the traditional method. It can shorten the time of queries. 

Introduction 

With the rapid development of Internet and Internet of things, the Internet will produce a lot of 

data every day and need to be processed. The emergence of other distributed data processing 

systems such as MapReduce[1] and Spark[2] solves the problem of massive data processing. For 

massive data, a large number of queries are usually needed to carry out statistical analysis of the 

data. Users make statistical analysis of data records by writing SQL query statements. These SQL 

statements run in batch processing, and the number of these statements is huge. Hive is a set of 

data warehouse analysis system based on Hadoop. It provides SQL query mode to analyze data 

stored in HDFS file system, and can transform SQL statement into MapReduce job.  

The emergence of Hive, a high-level language, simplifies user programming and improves work 

efficiency. However, all of the optimization work of Hive is carried out around a single query plan, 

and there is no effective optimization for multiple queries. In fact, there are a large number of 

common regions between multiple queries, which means that queries have the overlapped query 

regions. At the same time, there are regional aggregation in multiple queries, and most of the 

queries are concentrated in some hot query regions.  

In this paper, a multi-queries region clustering (MQRC) method is proposed. By partitioning 

query space and clustering the query sets, the complete query region is divided into multiple small 

query regions, which reduces search space and improves overall computation efficiency. 

Related Work 

Multi query optimization[3] is a hot issue in the research field of database. The problem 

describes how to efficiently use the common task to optimize multiple query statements to produce 

optimal execution results. By given a set of queries, each query has a set of alternative execution 
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plans and each plan has a set of tasks. MQO aims to choose an appropriate plan for each query and 

minimize the total execution time by performing common tasks only once. 

The study of MQO problems can be traced back to the 1980s,Sellis[4] was the first 

systematically presents the formula of the definition of the problem and proposed a heuristic 

algorithm to solve the MQO problem, but also proved mathematically that the MQO problem is a 

NP-Hard problem. 

In view of the problem of multi query optimization, there are some research achievements[5], 

which are divided into the following ways: 

1) Single query optimization technology 

Single query optimization technology considers a single query at a time and tries to generate 

the most efficient solution by examining and finding cheaper alternative plans.However, in the 

MQO problem, a suboptimal plan may be preferred for a query if it results in more common tasks 

with other queries in the set and thus yields global plan featuring a lower cost for the query set. 

2) Materialized view technology 

Materialized view technology caches intermediate results for some queries to be used by other 

queries. In the introduction of the framework m2r2[6], it is mentioned that the usual optimization 

query method is to avoid repeated computation by caching query results. Restore[7]also achieves 

job sharing and avoids redundant computation caching the results of a complete job or part of the 

job in advance. 

3) Multi-Q 

Multi-Q[8] is another way, this paper mentioned that most of the current research works are 

focus on improving the performance of query processing based on the view of systematics while 

without considering the characteristics of queries themselves, such as the query similarity, which 

will cause large numbers of redundant computation, effect query execution efficiency. Multi-Q 

present a multi-queries reuse dependence graph construction method to depict the dependence 

between the multiple queries and put forward a Multi-Q processing algorithm based on MRDG to 

achieve the query results reuse. 

Native Materialized View Method 

After analysis, it is found that most of the execution time of a query is spent on reading data 

from the HDFS file system, and reading data is a common task. Native materialized view method 

can scan sharing. By performing a preprocessing job, all the records involved in multiple queries 

are written into a materialized view and all the queries only read data from this materialized view. 

Because the data size of the materialized view is smaller than the data size of the data set, the 

native materialized view method can reduce the search space of the query, reducing the execution 

cost of the query set. 

Although the native materialized view technology can achieve scan sharing, it avoids reading 

the input data repeatedly, thereby reducing the execution cost of the query set. However, the native 

materialized view method does not respond well to the large number of queries. When the number 

of queries is large, the data size of the materialized view will be very large. Therefore, the search 

space of the query cannot be effectively reduced. 
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Multi-queries Region Clustering Method 

In order to further improve the processing efficiency of multi-queries, a multiple query 

optimization method based on regional clustering is proposed in this paper. This method makes 

effective use of the area overlap between queries and the region aggregation of query sets. The 

basic idea is to cluster the query set and group the queries with higher similarity into one group. 

Each group produces a materialized view, dividing the large query space into multiple small 

query spaces, making the query from load data in a smaller query space. Compared with the 

native materialized view method, this paper divides similar multiple queries into one group. By 

sharing the materialized view in the group, the execution cost of the query set can be reduced. 

Query Space Partition 

Through the analysis of the where clause of the query, the relevant columns of the where 

clause are obtained, and each column is divided according to the given granularity. Finally, the 

entire large query space is divided into a series of small query units. According to the WHERE 

statement restriction of the query, the region covered by the query can be approximated by a set 

of query units. 

 

 
Fig.1 Two queries and query space 

 

Query Similarity Definition 

The query similarity is used to describe the degree of similarity of two queries, which can be 

represented by the following formula: 

Sim(q1,q2)=
Sumunit(Setunit(q1)∩Setunit(q2))

Sumunit(Setunit(q1)∪Setunit(q2))
  (1) 

If Sim(q1,q2) =0 is not similar, if it is 1, it is similar and it is the maximum match. 

 

The average query similarity is used to describe the degree of similarity between a query and 

multiple other queries, which can be expressed by the following formula: 
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Simavg(q)=∑ (Sim(q,q
i
)

n

i=1

) 𝑛⁄  (2) 

The average query similarity of a query is high, indicating that the query is similar to other 

multiple queries. The average similarity of the calculated query is prepared for the later query 

clustering.  

Query Clustering based on Greedy Algorithm 

The core step of the MQRC is to build m queries into n query groups, and n≤m. The main 

purpose of this step is to cluster multiple queries with a high degree of similarity into one group. 

In the existing literature, there are a large number of techniques and methods for clustering. In 

general, these clustering techniques use some method to measure the distance between clustering 

objects, and these objects are points. However, the clustering object in this paper is a query, so it 

is not possible to cluster the query set using these clustering algorithms. For this reason, this paper 

proposes a clustering method based on greedy strategy to complete query clustering. 

The core idea of this algorithm is to calculate the similarity between queries and classify the 

queries with higher similarity into one group. The specific steps of the algorithm are as follows: 

Step 1: Calculate the average similarity of each query in turn, and sort them according to the 

average similarity from big to small. 

Step 2: Initialize a query group and use the query with the highest average similarity in the 

candidate query set as the initial object. 

Step 3: Calculate the average similarity of each query and query group in the candidate query 

set in turn, and select from them the query with the highest average similarity. 

Step 4: If the average similarity of the query with the highest degree of similarity is greater 

than SIM_THRESHOLD, add this query to the query group and delete this query from the 

candidate query set, then return to Step 3. Otherwise, it means that the query is not similar to the 

grouping of this query and then return to Step 2. In this paper we set the threshold 

SIM_THRESHOLD to 0.6. 

Algorithm 1 greedyClustering 

Input: The list of query 

Output: The list of group 

Procedure greedyCluster(List queryList) 

1:  init groups 

2:  candidateSet=sortBySimilarity(queryList)  

3:  while(!candidateSet.isEmpty()) 

4:     init group  

5:     initialObject= candidateSet.getFirst()   

6:     group.add(initialObject)  

7:     candidateSet.remove(initialObject) 

8:     while 

9:       object=getMaxObject(cluster,candidateSet)  

10:      if(object.value > SIM_THRESHOLD) 
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11:         group.add(object) 

12:         candidateSet.remove(object)  

13:      end if     

14:      else 

15:         groups.add(group); 

16:         break; 

17:      end else 

18:    end while 

19:  end while  

20:  return groups  

Query Processing 

Before executing the query, perform a preprocessed MapReduce job to generate multiple 

materialized views. This paper uses the MultipleOutputs module provided by MapReduce to 

implement multiple output. Execute a preprocessed MapReduce job and output multiple files to 

the HDFS file system. Each file is a materialized view and each materialized view corresponds to 

a query group. All queries in a group share a materialized view. 

Preprocessing 

Job
Input

Materialized view 

Materialized view 

Materialized view 

Q1，Q2，Q3

Q4，Q5

Q6，Q7，Q8

Group1

Group2

Group3

 
Fig.2 Region clustering based multiple query optimization 
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Experiment 

Environment Introduction 

Experiments in this paper uses a three nodes Hadoop cluster, in where there are 2 data nodes, 

1 name node. Each node of the cluster has Ubuntu 14.04 installed on it, Hadoop version is 2.7 for 

this experiment, JDK version is 1.8 and Hive version is 2.1.1. And each node contains 2 core 

CPU, 4GB memory and 120 GB disks. 

Method and Result 

The experimental data are generated by the benchmark test set TPC-H. TPC-H is widely used 

in the industry to test the comprehensive performance of complex decision support systems. In this 

experiment, we generate a data set of 20GB through the TPC-H tool, import it into the hive in the 

parquet format and generate queries based on the following query template: 

select l_returnflag, l_linestatus,sum(l_quantity) as sum_qty, 

sum(l_extendedprice) as sum_base_price, 

sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge 

from lineitem 

where l_extendedprice between x and x+y and l_quantity between x and x+y 

group by l_returnflag, l_linestatus order by l_returnflag, l_linestatus 

Where the parameters x and y are some random values generated by the query generator. We 

use a query generator to generate 100 queries randomly and submit these queries. Moreover, we 

use the processing time of the query set as the metric. 

For comparison purposed, we implement three query processing methods that are: (1) Hive 

handles each query independently. (2) Native materialized view method. (3) Multi query region 

clustering (MQRC) method is proposed in this paper.  

 

 
Fig.3 The comparison of performance 
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From the experimental results, it is easy to see that the MQRC method is faster than the native 

method. This is because the MQRC method effectively uses the regional overlap between queries 

and the regional aggregation of the query set. By clustering the query set, some queries with high 

similarity are divided into a group, and materialized views are shared within the group. 

Conclusions 

In this paper, we propose a multi-queries region clustering (MQRC) method to support multiple 

queries processing. By clustering the query set, we divide some queries with high similarity into a 

group, and share a materialized view within the group, which can effectively reduce the overhead 

of the query set. The experimental result verify that our method is much better than traditional 

methods. 
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