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Abstract. By using Bojanic-Cheng’s method and analysis techniques, the authors study the rate of 

convergence of Lupas-Durrmeyer type operators for some absolutely continuous functions having a 

derivative equivalent to a bounded variation. 

 

1  Introduction 

In [1],Aral introduced some Lupas-Durrmeyer type operators 
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Recently, Gupta [2] introduced another Lupas-Durrmeyer type operators 
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and investigated the local and global approximaiton properties. Futhermore, the authors also 

considered the voronvskaya type asymptotic formula. Later, several researchers have made 

significant contributions in this direction. We refer the reders to some of the related papers 

[3-6]. 

The rate of approximaiton for functions with derivatives of bounded variation is an 

interesting topic. This is mainly originated from Bojanic-Cheng [7], then many scholars have 

done a lot of research in this field [8-9]. Since the introduction of the operators based on Polya 

distribution, the work related to this [3-6] has not stopped. 

Inspired by this, this article studies the approximation of operator (1/ ) ( , )n

nD f x  for some 

absolutely continuous functions DBV , which having a derivative equivalent to a functions of 
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bounded function BV . 

We get some definition as follows. 

Definition 1 
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where [0,1], [0,1]x h BV  , i.e., h is a function of bounded variation on [0,1] . 

Definition 2 
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where ( )t is the Dirac delta function. 

By the Lebesgue-Stieltjes integral representations, we have 
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2  Some lemmas 

We start this section with the following uesful lemmas, which will be used in the sequel. 

Lemma 1(see [2]) For , 0,1,2i

ie t i  , we have 
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Remark 1  By simple applications of Lemma 1, we get 
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Remark 2  When n  sufficient large, we have 
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Lemma 2  When n  sufficient large, we have  
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Proof.  By Cauchy-Schwarz inequality, we have 
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The last inequality is obtained by Lemma 1 and remark 2. 
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Lemma 3 (i) For 0 1y x   , when n  sufficient large, there holds 
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(ii) For 0 1x z   , when n  sufficient large, there holds 
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Proof.  (i) By (3) and (4), we get  
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(ii) Using a similar method, we get (ii) easily. 

 

3  Conclusion 

Theorem  Let [0,1]f DBV . If )(),(  xhxh  exist at a fixed point (0,1)x , when n  

sufficient large, then we have 
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Proof.  Let f  satisfy the conditions of Theorem, by using Bojanic-Cheng’s method [7], we have 

              ( ) ( ) ( )
t

x
f t f x h u d u   ,                          （6） 

and ( )h u  can be expressed as 

 
( ) ( ) ( ) ( )

( ) ( )
2 2

x

h x h x h x h x
h u u sign u x

     
    







 


2

)()(
)()(

xhxh
xhux ,    （7） 

where 

148

Advances in Engineering Research (AER), volume 137












xu

xu
ux

,0

,1
)( , 

1, 0;

( ) 0, 0;

1, 0.

x

sign x x

x




 
 

 

From (6) and (7), and noting xtduxusign
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x , we find that 
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By Remark 1, Remark 2 and Lemma 2, we have 
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To complete the proof, we must estimate the term (1/ ) ( ( ) , )
t
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From Lemma 3(i) and 0 ( , ) 1nR x t  , we have 
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Putting 
u

x
xt   for the integral of (10), we get 
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From (10) and (11), it follows that 
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Using the same method, we get  
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Theorem now follows from (8), (9), (12) and (13). This completes the proof. 
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