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Abstract. By using Bojanic-Cheng’s method and analysis techniques, the authors study the rate of
convergence of Lupas-Durrmeyer type operators for some absolutely continuous functions having a
derivative equivalent to a bounded variation.

1 Introduction
In [1],Aral introduced some Lupas-Durrmeyer type operators

L(ﬂl/n) (f , X) — (n +1)i prgl/k”)(x)jol pn,k (t) f (t)dt , @D)
k=0

wny oy 2(NY)
where f € C[0,1], p; (x)—m(k)(nx)k(n—nx)n_k,(n)k =n(n+1)---(n+k-1),

P =1 )t @-1)"*, and p{”(x) come from the density function of Polya distribution

k-1 n-k-1
(x+va) [ | A—x+ ua)
PP () = (7 ) g xe[0,1].
Q1+ 1)
A=0

Recently, Gupta [2] introduced another Lupas-Durrmeyer type operators
D™ (%) =03 P42 (9], 11 f (Ot + P (X) £(0), ()
k=1

and investigated the local and global approximaiton properties. Futhermore, the authors also
considered the voronvskaya type asymptotic formula. Later, several researchers have made
significant contributions in this direction. We refer the reders to some of the related papers
[3-6].

The rate of approximaiton for functions with derivatives of bounded variation is an
interesting topic. This is mainly originated from Bojanic-Cheng [7], then many scholars have
done a lot of research in this field [8-9]. Since the introduction of the operators based on Polya
distribution, the work related to this [3-6] has not stopped.

Inspired by this, this article studies the approximation of operator D" (f,x) for some

absolutely continuous functions DBV, which having a derivative equivalent to a functions of
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bounded function BV .
We get some definition as follows.
Definition 1

DBV[0,1] = { 0=+ h(t)dt} ,

where x €[0,1],h e BV[0,1], i.e., his a function of bounded variation on [0,1].

Definition 2

K (X t) = nz p(lln) (X) pn—l,k—l(t) + 5(1:) '

where &(t) is the Dirac delta function.
By the Lebesgue-Stieltjes integral representations, we have
DI (f,x)=], f (K (x, bt (3)

2 Some lemmas
We start this section with the following uesful lemmas, which will be used in the sequel.

Lemma 1(see [2]) For e =t',i=0,1,2, we have

DY (e, x) =1, DY (e,, x) = 2,
n (0 ) n (1 ) n+l
DU (e, x) = n(n=1)x*+n@Bn+1x
"o (n+1)2(n+2)

Remark 1 By simple applications of Lemma 1, we get

DY (t - xx)_—x
n+1
X) = (N+2-3n*)x* +n(3Bn+1)x

(n+1D?*(n+2)

D ((t-X)*, X

Remark 2 When n sufficient large, we have

352(x)
+1

DYM((t-x)?, x) < = (4

where 5%(x) = X(1—X) + L
n+1

Lemma?2 When n sufficient large, we have

DI (|t —x|,x) < Iiﬁn (x). (5)
n+1

Proof. By Cauchy-Schwarz inequality, we have

/n) _ (1/n) _ 2 . U/n) i
DI ([t - x|, X) < /DI ((t—x)%,x) - /DI (L x) < /n+15n(x).

The last inequality is obtained by Lemma 1 and remark 2.
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Lemma 3 (i) For 0<y<x<1,when n sufficient large, there holds

30, (x)
(n+1)(x—y)*
(if) For 0<x<z<1,when n sufficient large, there holds

30, (x)
(N+D(z-x)?

R (X, y) = joy K, (x,t)dt <

1-R,(x,2) = [ K, (x tydt <

Proof. (i) By (3) and (4), we get

R,(x, =] K, (x t)dt<jy(x—t) K (x,tydt <

% [ %7K, (x byt

1 n 357(X)
D() , n .
ooy S e Ty

(1) Using a similar method, we get (ii) easily.

3 Conclusion

Theorem Let f eDBV[0,1]. If h(x+),h(x—) exist at a fixed point xe(0,1), when n

sufficient large, then we have

x[h(x+) + h(x— )]|
20+ ) |-|h(><+) h(x— )| 5,(x)

DM (f,%) - F(x)+ )

%\”

652(X) W ]”7 NN
(n+1)x(1—x) kz:‘ ' )+ kz : (q’*

%\

Where
h(t)—h(x+),x<t<1;

o, (1) =40, t=x;
h(t)—h(x-),0<t < x.

Proof. Let f satisfy the conditions of Theorem, by using Bojanic-Cheng’s method [7], we have

(- fO8]  h(u) (6)
and h(u) can be expressed as
h(u) =W+¢X(u)+wsign(u ~X) +3, (u)[h(x) —W} (7
where
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1 1, x>0

v U=X .

o, (u) = , sign(x)=<5 0, x=0;
0 . u=x -1, x<0

From (6) and (7), and noting Ltsign(u —x)du =]t — x|, j‘ 5, (u)du =0, we find that

DY (f,x)— £ (X) = DI (f (1) - f(x),x) = D™ ([ h(u)du, X)

_ h(x+);h(x—) DIt x,x) + h(x+);h(x—)
By Remark 1, Remark 2 and Lemma 2, we have

, X[ +h(x)]| _ [h(x+) —h(xo)
2M+1) | 2

Drglln) (|t _ X| , X) n ngl/n) (.[: o, (u)du, X) .

DY (f,%) - (X) D™ (it — x|, X)+

D[, (W), )

3
< |h(X+) - h(X—)| mén (x)+

D§1’“>(j:(px(u)du,x)‘. (8)

To complete the proof, we must estimate the term D" (Lt @, (u)du, X).
From (3), the term D™ ( I: @, (u)du, x) can be stated as
t 1 t 1 t
DI ([ g W)du, ) = [ ([ @, (udu)K, (x,t)dt = [ (] @, (u)du)d,R,(xt)
X t 1 et
= |, (| o du)dR, (1) +[ (] @, W)du)dR, (x,1).
Let A, (f,X)= jox ( j‘ @, (U)du)d,R (x,t), A, (f,X) = jl( jt @, (u)du)d,R (x,t), then we have
DI([ g, (u)du, X)=Ay, (F,X)+A,,(F,%) (9)

Fistly, we estimate A, (f,x). Using partial integration and noticing Rn(x,O):O,IXX¢X(u)du:O,
we get

A(F ) =R ()] g, (u)dy

B e R R, (X,t)e, (t)dt .
[jo +Lﬁ} (X, 1), (1)

Thus, it follows that

s~ [T RO, (Ot =—[ R, (x, Dy, (D)t

A (0] < [TR ()Y (@)dt+ [, R (GHV ()t
0 t X*ﬁ t

From Lemma 3(i) and 0<R (X,t) <1, we have

X

2 X—LV((Dx) X
36, 0 e 0 gy X V (9. (10)

n+l o (x-t)° «/HX_T

|Aln(f ' X)| <

149



‘ ATL'SI':ETslz Advances in Engineering Research (AER), volume 137

Putting t=x X for the integral of (10), we get
u

X

x_i\t/((Px) 214
Oﬁ(x_t) =—j V( du <= kzl'x\_/,(q)*' (11

From (10) and (11), it follows that

2 Whi «x
A (F, )] < “X)

( )+— V (o). (12)
ISR AN A
Using the same method, we get

1-x ><+l_—x
652(x) &k 1-

Vv V (13
g Y @V )

Theorem now follows from (8), (9), (12) and (13). This completes the proof.

A, (F,%)]<
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