
An optimization strategy of massive small files storage based on HDFS

Xun Cai1,a,*, Cai Chen2,b and Yi Liang3,c

1 Beijing University of Technology, Beijing, China

2 Beijing University of Technology, Beijing, China

3 Beijing University of Technology, Beijing, China

amorethancx@163.com, bchencai@bjut.edu.cn, cyliang@ bjut.edu.cn

*Corresponding author

Keywords: Storage of Small Files, Distribution of Small Files, Merge, Relationship between files.

Abstract. Nowadays, Hadoop distributed file system as a distributed storage system, has a good effect

on the storage of large files. However, there is a natural flaw in the storage of small files: storing a

large number of small files will produce excessive metadata, resulting in namenode memory

bottlenecks; frequent RPC communications will cause time consumption due to over-provisioning.

To solve these problems, this paper presents a merging algorithm based on two factors: the

distribution of files and the correlation of files. The algorithm can not only reduce the HDFS blocks,

but also make relevant files close. Experimental results show that the algorithm effectively improves

the storage efficiency of HDFS on small files and help to optimize the access of small files.

Introduction

With the rapid development of Internet technology in recent years, the era of big data has arrived.

Due to the growing demands for data storage and access, many distributed technologies and

frameworks emerge as the times require. One of them is Apache Hadoop[1]. Because of its

advantages on robustness, scalability and cost to other platforms, Hadoop has become the most widely

used Big Data analytics platform today. Hadoop Distribute File System (HDFS)[2] has the

characteristics of high throughput and high fault tolerance, and has become the most important data

storage framework in the industry.

The HDFS framework is a master-slave architecture. The master node Namenode is responsible

for providing the metadata service; the slave node Datanodes is responsible for storing the data by

blocks. However, HDFS can not cope with the storage and access of a large number of small files:

when storing small files, it generates too much metadata information and runs out of memory of the

Namenode; when accessing small files, clients frequently make calls through RPC Getting metadata

about the block where the small file resides adds significant time costs. In addition, HDFS allocates

128MB of data blocks for each file for storage, and the independent occupation of blocks will causes

storage space fragmentation.

At present, one of the solutions to the small file problem on the HDFS is to merge the files into

bigger files and then store them. Two factors need to be considered in the process of merge: 1) the

relevance of small files, to ensure the efficiency of small files; 2) the distribution of small files, to

ensure maximum use of storage space, optimization the processing efficiency of platform. This paper

fully considers and weighs the above two factors. Based on the quantitative analysis of file relevance,

this paper proposes a uniform merge algorithm based on file relevancy.

Related Work

Based on the above two factors, many efforts have been made to optimize the storage of small files

on HDFS.

Article [3,4] propose two merge strategy for small files base on correlation of files and special

scenarious. Article[3] is to solve BlueSky system PPT files stored problems, small files of the same

PPT courseware are combined into one large file; article[4] consider the characteristics of WebGIS

225Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

2018 Joint International Advanced Engineering and Technology Research Conference (JIAET 2018)
Advances in Engineering Research (AER), volume 137

data system, combine the small files that has adjacent geographical location information and less than

16MB into 64MB files, and all the small files were established a hash index. Based on these two

articles, there are many other mergers emerged. Literature[5] introduced the concept of priority

between files. Firstly add the small file to the merge queue and select a file to be merged and sort

other files in the merge queue by priority. Priority depends on two conditions: the user and the upload

time of files. All of files are divided into four levels, and then according to the 0/1 knapsack problem

to merge. Literature [6,7] involve the merge of educational resource files. The former combines all

the small files belonging to the same large file into a file. The latter uses the VSM algorithm to judge

the association between small files and calculates the cosine of the text feature vector between the

two small files, and merge according to the cosine value. The considerations of these strategies are

based on the relevance of the merger documents, and according to different scenarios designed

different combination of strategies. Literature[8] obtained the correlation of small files by analyzing

a large number of small files access logs, and described the correlation degree of files more accurately.

In addition to considering the relevancy between small files, the distribution of small files within

a block of files is also an important factor. If the size of the merged file exceeds the size of the HDFS

file (64 MB), metadata will be added to the Namenode, and the blocks will be fragmented. article[9]

considered the distribution of small files in the block first, and proposed the Tetris merge algorithm.

The core idea is based on the balance of small files, ensure that they are evenly distributed, and then

spread to the merged large files, thus ensuring the merged large files in HDFS will not be divided

into extra blocks. Based on the distribution of small files, literature[10] proposed OMSS algorithm to

improve MapFile's merging process and used the worst fit strategy to merge the files into MapFile.

However, none of the above methods considered the impact of file relevancy on the efficiency of the

merged files. Literature[11] proposed a double-merging algorithm, taking into account the

relationship between the file and the balance of data block. However, this method only consider the

same user's file resources as the related files, it does not fully tap the correlation between the files.

Design and implementation of small files merging based on two factors

Basic idea of algorithm

For the combination of small files, the correlation of files and the balance of merged files must be

considered synthetically. For example, the following occurs when the file is merged, which is shown

as Fig. 1: There are four small files, which are A: 60MB, B: 40MB, C: 20MB, D: 80MB, among them

A, B and C’s correlation degree is higher than the correlation degree with D. Now it is merged into

two merged files. The following two situation may appear. Scenario A: mergefileA contains A and B

with a total size of 100MB. mergefileB contains C and D with a total size of 100MB; scenario B:

mergefileA contains A, B, C, size 120MB and mergefileB contains D, size 80MB. The two have the

same result in the distribution of files, and even the distribution of files in scenario 1 is more

uniformity. However, given the factor of document relevance, Option in scenario 2 is preferable.

Because it merges into two file blocks, placing three highly relevant files in the same block.

mergefileA

60MB 40MB

mergefileA

60MB

mergefileB

20MB

80MB

40MB

scenario A scenario B

mergefileB

20MB 80MB

Fig.1 Two scenario of merging files

This paper presents a small file merging algorithm based on file distribution and file correlation

(MBDC). The algorithm takes full account of the degree of correlation between the small files, and

226

Advances in Engineering Research (AER), volume 137

then make evenly distribution, finally merged into a large file. The algorithm not only reduces the

number of merged files, equals to the number of blocks, to a certain extent, thus reducing the load of

Namenode nodes, but also ensures that the related files are located adjacent to each other and the file

access is more efficient.

Correlation of files

In order to find the association between small files more objectively and accurately, it is necessary to

analyze history access logs. The analysis of the history of the file access log will produce a real and

objective user access to each file, and then get the correlation between the files. Literature[8] provides

a way to get a collection of related files from the logs. It draws a collection of file relations whose

relevance is above some certain thresholds. Based on this, this article divides and weights the

collection, different weights represent different levels of correlation and serve as the correlation of

small files. As Fig. 2 shows.

setA

(file1 file2)

(file1 file3)

(file1 file4)

(file3 file4)

...

setB

(file2 file3)

(file2 file4)

(file4 file5)

(file4 file6)

...

setC

(file1 file5)

(file2 file5)

(file5 file6)

...

 W = a W = b W = c
Fig.2 Sets of file relationship

Definition 1 Correlation(file1,file2). It represent the correlation value between file1 and file2.

Correlation(file1,file2) = W(S), (file1,file2)S. (1)

S is the set of relationship and relationship (file1,file2) is belong to S. W is the weight of S.

Design of algorithm

Before introducing the design of this algorithm, we first explain the concepts and data structure

involved in the algorithm. f is small file to be merged; q is the queue for storing files temporarily;

qList is the list that include all of q; inuseList is a subset of qList and it include all of q that is not

empty and dose not reach the merge threshold. fitList is a subset of inuseList and it include all of q

whose remaining space is more than size of f ; candidateList is a subset of fitList and it include all of

q whose correlation value exceeds threshold.

Definition 2 Correlation(file,q). It represent the average correlation value between file and every

file in q and n is the number of files in q.

 Correlation(file,q)= ∑ Correlation(f,fi)n
i=1 n⁄ , fi∈q. (2)

The execution process of the algorithm is as below:

1. Initialize Merge Queue Complete set qList and size n and by analyzing a large number of log files

to get the file relationship mapping set {Sn}.

2. For the current small file f, check inuseList first. If inuseList non-empty, then select all eligible q

(ie, the q whose remaining space can accommodate the current f), join into fitList. If inuseList is

empty, then put f into any empty q and put q into inuseList.

3. If fitList non-empty, traverse fitList. For each queue qi in fitList, find the average correlation

Correlation (f, qi) according to {Sn}. If Correlation (f, qi)>firstThreshold, put f into qi; else then

qi is removed from the fitList and enters the candidateList.

4. candidateList is set to judge and weigh the correlation of files and the distribution of files. If we

only consider the degree of correlation, then when the overall related level of files is not so closely,

it will result in space waste. In this case, we need a compromise: in the candidateList select the

highest average correlation queue qmax for f, determine the value of Correlation (f, qmax), if the

227

Advances in Engineering Research (AER), volume 137

value exceeds the secondThreshold, then let f into qmax; otherwise they will not consider

correlation, make f into the new queue.

5. If fitList is empty, it means that there is not a merge queue at this time can accommodate the

current small file. Check the minimum remaining space in the inuseList queue qm, if the size of

the qm reaches the merge threshold (HDFS block size of 97%), then the files in qm are converted

into MapFile[12].

Design of algorithm

Pseudocode of core implementation of algorithm is described as below:

Input: merge small file set named FileSet, file relationship mapping set named CorrelationMap,

number of queue named n, threshold of correlation named firstThreshold and

secondThreshold

Output: After the merger of large files named MergedFile

1. Initialization：qList，inuseList，fitList，candidateList

2. Foreach file f in FileSet, then goto step 17

3. If inuseList.isEmpty(),goto step 4,else goto step 5

4. Select q form qList, put f into q, put q into inuseList

5. Foreach q in inuseList. if q.emptySize() > f.size, then put q into fitList

6. If fitList.isEmpty(), goto step 7,else goto step 9

7. Foreach q in inuseList, calc max q.size queue qm

8. If qm.size>MergeLimit*0.97, then goto step 17

9. Foreach queue qi in fitList, do calc correlation(f,qi) =
∑ 𝑅(𝑓,𝑓𝑖)𝑛

𝑖=1

𝑛
,𝑓𝑖 ∈ 𝑞𝑖

10. If correlation(f,qi)> FirTh, goto step 16,else goto step 11

11. Move qi from fitList then put qi into candidateList

12. If fitList.isEmpty(),goto step 13.else goto step 9

13. Calc max correlation(f,qi) from candidateList queue qmax

14. If correlation(f,qmax)<SecTh, goto step 4, else goto step 15

15. Put f into qmax, then move qmax from candidateList into inuseList

16. Put f into q, then move q from fitList into inuseList

17. Merge files in q.

Experiments

Experimental environment

Experiments in this paper uses a three-node Hadoop cluster. It contains a Namenode and two

Datenodes. All three nodes are Intel CPU (3.30 GHz), 16GB memory and 240 GB disk, and act as

Datanodes and Namenode.

Each node of the cluster has Ubuntu 14.04 installed on it, an the Hadoop version is 2.7.1 for this

experiment, JDK version is 1.7, HDFS data block size is 128MB. The number of copies of the data

block is 3.

In order to verify the algorithm for small file storage optimization better, this paper collected 3132

files, the total size is 7.93GB. The file size distribution varies from below 100KB to 64MB. Among

them, files under 5MB in size account for 93% of the total files. According to literature [8]we get all

the files relationship mapping, divided them into three mapping sets, weights of sets are:

 W(Sn)= {
10,n=1

5 ,n=2

1 ,n=3

 (3)

228

Advances in Engineering Research (AER), volume 137

Experiment on time consumption of importing files into HDFS

In order to verify the merging effect of MBDC on small files, this paper compares the time cost of

importing the merged files to HDFS. The object of comparison is HDFS normal import, using PS

algorithm[11] and using MBDC. The total number of normal imported files is 3132, and the number

of imported files processed by the PS algorithm and MBDC are 65 and 69. The experimental results

is shown as Fig. 3. As can be seen from the comparative test, MBDC has a 33.8% improvement over

the normal import, slightly inferior to the PS algorithm. This is mainly due to the fact that the

algorithm in this paper takes the correlation of files into full consideration and the extra cost involved

in calculating the correlation between files leads to a slight disadvantage in the comparison of import

times.

Experiment on memory consumption of Namenode

The histogram in Fig. 4 visually shows the consumption of NameNode memory by importing directly,

using the PS algorithm and using MBDC. It can be seen from the figure that compared with the

normal import, the PS algorithm and MBDC that take full account of the file block balance have a

great decrease on the memory consumption of the Namenode. However, due to the trade-off of this

method of files’ correlation, the number of final merged files is slightly larger, resulting in a slightly

lower memory overhead in the Namenode than the PS algorithm.

 Fig.3 Comparison of time Fig.4 Comparison of memory

consumption of importing small files consumptions at Namenode

Experiment on time consumption of file access

In order to verify the optimization effect of MBDC on file access, this paper uses cache to deal with

the access procedures of small files. We caches the block contents of the current access and prioritizes

the data in the cache when accessing the file. The cache size is 1GB, about 8 times the block size.

Cache replacement strategy is FIFO. According to the user's habit of visiting, this paper tests the

access time of 500,1000,1500,2000 small files respectively.

Fig.5 Comparison of time consumption of data access

 Test results as Fig.5 shown. As can be seen from the figure, compared with the default HDFS

access method and the access method using PS algorithm storage, the algorithm greatly reduces the

0
50

100
150
200
250
300
350
400
450

Normal
import

PS
algorithm

MBDC
algorithm

T
im

e
 C

o
n

su
m

p
ti

o
n

(s
)

469800

9600 10350

0

100000

200000

300000

400000

500000

Normal
import

PS
Algorithm

MBDC
Algorithm

N
am

en
o

d
e

M
em

o
ry

C
o

n
su

m
p

ti
o

n
(b

yt
e)

0
200
400
600
800

1000
1200

5 0 0 1 0 0 0 1 5 0 0 2 0 0 0

TI
M

E
C

O
N

SU
M

P
TI

O
N

(S
)

NUMBER OF FILE

Normal HDFS Use PS Algorithm Use My Algorithm

229

Advances in Engineering Research (AER), volume 137

access time and improves the access efficiency. This is mainly due to MBDC is more fully than the

PS algorithm to the relevant files in the same block, making the cache hit rate extremely high,

effectively reducing the time consumption of I/O between client and Namenode.

Conclusions

This paper, aiming at the defects of Hadoop distributed file system for small file storage, taking into

account the correlation between the files and the size of the file after the merger of these two factors,

puts forward an optimized merge algorithm, MBDC. It is based on the substantial optimization for

HDFS storage efficiency of small files, to ensure efficient file access. The experimental results show

that MBDC can effectively improve the import efficiency of small files and solve the bottleneck of

Namenode memory in the aspect of storage optimization of small files, and greatly improve the

efficiency of reading related files. The disadvantages of this approach are a) a certain degree of time

consumption associated with increasing file size as computing correlation of files; b) there is no

obvious advantage in random access to small files. Storage optimization of small files on HDFS still

needs further study.

References

[1] T. White and D. Cutting, Hadoop : the definitive guide, O’reilly Media Inc Gravenstein

Highway North, vol. 215, 2009, pp. 1–4.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, The Hadoop Distributed File System,

MASS Storage Systems and Technologies, 2010, pp. 1–10.

[3] B. Dong, J. Qiu, Q. Zheng, X. Zhong, J. Li, and Y. Li, A Novel Approach to Improving the

Efficiency of Storing and Accessing Small Files on Hadoop: A Case Study by PowerPoint

Files, IEEE International Conference on Services Computing, SCC 2010, Miami, Florida,

Usa, July, 2010, pp. 65–72.

[4] X. Liu, J. Han, Y. Zhong, C. Han, and X. He, Implementing WebGIS on Hadoop: A case

study of improving small file I/O performance on HDFS, IEEE International Conference on

CLUSTER Computing and Workshops, 2009, pp. 1–8.

[5] ZOUZhenyu, ZHENGQuan, WANGSong, and YANGJian, Optimization Scheme of Small

File in Cloud Storage System Based on HDFS, Computer Engineering, vol. 42, 2016, pp.

34–40.

[6] LIMeng, CAOSheng, and QINZhi-guang, Storage Optimization Method of Small Files Based

on Hadoop, Journal of University of Electronic Science and Technology of China, 2016, pp.

141–145.

[7] YOU Xiao-rong,CAO Sheng, Storage Research of Small Files in Massive Education

Resource, Computer Science, vol. 42, 2015, pp. 76–80.

[8] Gu Yuwan Wang Wenwen Sun Yuqiang, Optimization of massive small files storage and

accessing on HDFS, Application Research of Computers, vol. 34, 2017, pp. 2319–2323.

[9] H. He, Z. Du, A. Chen, and A. Chen, Optimization strategy of Hadoop small file storage for

big data in healthcare, Journal of Supercomputing, vol. 72, 2016, pp. 3696–3707.

[10] D. Sethia, S. Sheoran, and H. Saran, Optimized MapFile based Storage of Small files in

Hadoop, Ieee/acm International Symposium on Cluster, Cloud and Grid Computing, 2017, pp.

906–912.

[11] WANG Quan-min, ZHANG Cheng, ZHAO Xiao-tong, LEI Jia-wei, A Small Hadoop File

Storage Optimization Scheme, Computer Technology And Development, vol. 26, 2016, pp.

41–44.

[12] Information onhttps://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/io/MapFile.html

230

Advances in Engineering Research (AER), volume 137

