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Abstract. Nowadays, Hadoop distributed file system as a distributed storage system, has a good effect 

on the storage of large files. However, there is a natural flaw in the storage of small files: storing a 

large number of small files will produce excessive metadata, resulting in namenode memory 

bottlenecks; frequent RPC communications will cause time consumption due to over-provisioning. 

To solve these problems, this paper presents a merging algorithm based on two factors: the 

distribution of files and the correlation of files. The algorithm can not only reduce the HDFS blocks, 

but also make relevant files close. Experimental results show that the algorithm effectively improves 

the storage efficiency of HDFS on small files and help to optimize the access of small files. 

Introduction 

With the rapid development of Internet technology in recent years, the era of big data has arrived. 

Due to the growing demands for data storage and access, many distributed technologies and 

frameworks emerge as the times require. One of them is Apache Hadoop[1]. Because of its 

advantages on robustness, scalability and cost to other platforms, Hadoop has become the most widely 

used Big Data analytics platform today. Hadoop Distribute File System (HDFS)[2] has the 

characteristics of high throughput and high fault tolerance, and has become the most important data 

storage framework in the industry. 

The HDFS framework is a master-slave architecture. The master node Namenode is responsible 

for providing the metadata service; the slave node Datanodes is responsible for storing the data by 

blocks. However, HDFS can not cope with the storage and access of a large number of small files: 

when storing small files, it generates too much metadata information and runs out of memory of the 

Namenode; when accessing small files, clients frequently make calls through RPC Getting metadata 

about the block where the small file resides adds significant time costs. In addition, HDFS allocates 

128MB of data blocks for each file for storage, and the independent occupation of blocks will causes 

storage space fragmentation. 

At present, one of the solutions to the small file problem on the HDFS is to merge the files into 

bigger files and then store them. Two factors need to be considered in the process of merge: 1) the 

relevance of small files, to ensure the efficiency of small files; 2) the distribution of small files, to 

ensure maximum use of storage space, optimization the processing efficiency of platform. This paper 

fully considers and weighs the above two factors. Based on the quantitative analysis of file relevance, 

this paper proposes a uniform merge algorithm based on file relevancy. 

Related Work 

Based on the above two factors, many efforts have been made to optimize the storage of small files 

on HDFS. 

Article [3,4] propose two merge strategy for small files base on correlation of files and special 

scenarious. Article[3] is to solve BlueSky system PPT files stored problems, small files of the same 

PPT courseware are combined into one large file; article[4] consider the characteristics of WebGIS 
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data system, combine the small files that has adjacent geographical location information and less than 

16MB into 64MB files, and all the small files were established a hash index. Based on these two 

articles, there are many other mergers emerged. Literature[5] introduced the concept of priority 

between files. Firstly add the small file to the merge queue and select a file to be merged and sort 

other files in the merge queue by priority. Priority depends on two conditions: the user and the upload 

time of files. All of files are divided into four levels, and then according to the 0/1 knapsack problem 

to merge. Literature [6,7] involve the merge of educational resource files. The former combines all 

the small files belonging to the same large file into a file. The latter uses the VSM algorithm to judge 

the association between small files and calculates the cosine of the text feature vector between the 

two small files, and merge according to the cosine value. The considerations of these strategies are 

based on the relevance of the merger documents, and according to different scenarios designed 

different combination of strategies. Literature[8] obtained the correlation of small files by analyzing 

a large number of small files access logs, and described the correlation degree of files more accurately. 

In addition to considering the relevancy between small files, the distribution of small files within 

a block of files is also an important factor. If the size of the merged file exceeds the size of the HDFS 

file (64 MB), metadata will be added to the Namenode, and the blocks will be fragmented. article[9] 

considered the distribution of small files in the block first, and proposed the Tetris merge algorithm. 

The core idea is based on the balance of small files, ensure that they are evenly distributed, and then 

spread to the merged large files, thus ensuring the merged large files in HDFS will not be divided 

into extra blocks. Based on the distribution of small files, literature[10] proposed OMSS algorithm to 

improve MapFile's merging process and used the worst fit strategy to merge the files into MapFile. 

However, none of the above methods considered the impact of file relevancy on the efficiency of the 

merged files. Literature[11] proposed a double-merging algorithm, taking into account the 

relationship between the file and the balance of data block. However, this method only consider the 

same user's file resources as the related files, it does not fully tap the correlation between the files. 

Design and implementation of small files merging based on two factors 

Basic idea of algorithm 

For the combination of small files, the correlation of files and the balance of merged files must be 

considered synthetically. For example, the following occurs when the file is merged, which is shown 

as Fig. 1: There are four small files, which are A: 60MB, B: 40MB, C: 20MB, D: 80MB, among them 

A, B and C’s correlation degree is higher than the correlation degree with D. Now it is merged into 

two merged files. The following two situation may appear. Scenario A: mergefileA contains A and B 

with a total size of 100MB. mergefileB contains C and D with a total size of 100MB; scenario B: 

mergefileA contains A, B, C, size 120MB and mergefileB contains D, size 80MB. The two have the 

same result in the distribution of files, and even the distribution of files in scenario 1 is more 

uniformity. However, given the factor of document relevance, Option in scenario 2 is preferable. 

Because it merges into two file blocks, placing three highly relevant files in the same block. 
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Fig.1 Two scenario of merging files 

 

This paper presents a small file merging algorithm based on file distribution and file correlation 

(MBDC). The algorithm takes full account of the degree of correlation between the small files, and 
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then make evenly distribution, finally merged into a large file. The algorithm not only reduces the 

number of merged files, equals to the number of blocks, to a certain extent, thus reducing the load of 

Namenode nodes, but also ensures that the related files are located adjacent to each other and the file 

access is more efficient. 

Correlation of files 

In order to find the association between small files more objectively and accurately, it is necessary to 

analyze history access logs. The analysis of the history of the file access log will produce a real and 

objective user access to each file, and then get the correlation between the files. Literature[8] provides 

a way to get a collection of related files from the logs. It draws a collection of file relations whose 

relevance is above some certain thresholds. Based on this, this article divides and weights the 

collection, different weights represent different levels of correlation and serve as the correlation of 

small files. As Fig. 2 shows. 

 
setA

(file1 file2)
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(file3 file4)

...
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(file2 file3)
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...
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(file1 file5)

(file2 file5)
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...

      W = a                W = b W = c  
Fig.2 Sets of file relationship 

Definition 1 Correlation(file1,file2). It represent the correlation value between file1 and file2. 

Correlation(file1,file2) = W(S), (file1,file2)S.                                     (1) 

 

S is the set of relationship and relationship (file1,file2) is belong to S. W is the weight of S. 

Design of algorithm 

Before introducing the design of this algorithm, we first explain the concepts and data structure 

involved in the algorithm. f is small file to be merged; q is the queue for storing files temporarily; 

qList is the list that include all of q; inuseList is a subset of qList and it include all of q that is not 

empty and dose not reach the merge threshold. fitList is a subset of inuseList and it include all of q 

whose remaining space is more than size of f ; candidateList is a subset of fitList and it include all of 

q whose correlation value exceeds threshold. 

Definition 2 Correlation(file,q). It represent the average correlation value between file and every 

file in q and n is the number of files in q. 

 

     Correlation(file,q)= ∑ Correlation(f,fi)n
i=1 n⁄ , fi∈q.                                  (2) 

 

The execution process of the algorithm is as below: 

1. Initialize Merge Queue Complete set qList and size n and by analyzing a large number of log files 

to get the file relationship mapping set {Sn}. 

2. For the current small file f, check inuseList first. If inuseList non-empty, then select all eligible q 

(ie, the q whose remaining space can accommodate the current f), join into fitList. If inuseList is 

empty, then put f into any empty q and put q into inuseList. 

3. If fitList non-empty, traverse fitList. For each queue qi in fitList, find the average correlation 

Correlation (f, qi) according to {Sn}. If Correlation (f, qi)>firstThreshold, put f into qi; else then 

qi is removed from the fitList and enters the candidateList. 

4. candidateList is set to judge and weigh the correlation of files and the distribution of files. If we 

only consider the degree of correlation, then when the overall related level of files is not so closely, 

it will result in space waste. In this case, we need a compromise: in the candidateList select the 

highest average correlation queue qmax for f, determine the value of Correlation (f, qmax), if the 
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value exceeds the secondThreshold, then let f into qmax; otherwise they will not consider 

correlation, make f into the new queue. 

5. If fitList is empty, it means that there is not a merge queue at this time can accommodate the 

current small file. Check the minimum remaining space in the inuseList queue qm, if the size of 

the qm reaches the merge threshold (HDFS block size of 97%), then the files in qm are converted  

into MapFile[12]. 

Design of algorithm 

Pseudocode of core implementation of algorithm is described as below: 

Input: merge small file set named FileSet, file relationship mapping set named CorrelationMap, 

number of queue named n, threshold of correlation named firstThreshold and 

secondThreshold 

Output: After the merger of large files named MergedFile 

1. Initialization：qList，inuseList，fitList，candidateList 

2. Foreach file f in FileSet, then goto step 17 

3. If inuseList.isEmpty(),goto step 4,else goto step 5 

4. Select q form qList, put f into q, put q into inuseList 

5. Foreach q in inuseList. if q.emptySize() > f.size, then put q into fitList 

6. If fitList.isEmpty(), goto step 7,else goto step 9 

7. Foreach q in inuseList, calc max q.size queue qm 

8. If qm.size>MergeLimit*0.97, then goto step 17 

9. Foreach queue qi in fitList, do calc correlation(f,qi) = 
∑ 𝑅(𝑓,𝑓𝑖)𝑛

𝑖=1

𝑛
,𝑓𝑖 ∈ 𝑞𝑖 

10. If correlation(f,qi)> FirTh, goto step 16,else goto step 11 

11. Move qi from fitList then put qi into candidateList 

12. If fitList.isEmpty(),goto step 13.else goto step 9 

13. Calc max correlation(f,qi) from candidateList queue qmax 

14. If correlation(f,qmax)<SecTh, goto step 4, else goto step 15 

15. Put f into qmax, then move qmax from candidateList into inuseList 

16. Put f into q, then move q from fitList into inuseList 

17. Merge files in q. 

Experiments 

Experimental environment 

Experiments in this paper uses a three-node Hadoop cluster. It contains a Namenode and two 

Datenodes. All three nodes are Intel CPU (3.30 GHz), 16GB memory and 240 GB disk, and act as 

Datanodes and Namenode. 

Each node of the cluster has Ubuntu 14.04 installed on it, an the Hadoop version is 2.7.1 for this 

experiment, JDK version is 1.7, HDFS data block size is 128MB. The number of copies of the data 

block is 3. 

In order to verify the algorithm for small file storage optimization better, this paper collected 3132 

files, the total size is 7.93GB. The file size distribution varies from below 100KB to 64MB. Among 

them, files under 5MB in size account for 93% of the total files. According to literature [8]we get all 

the files relationship mapping, divided them into three mapping sets, weights of sets are: 

 

    W(Sn)= {
10,n=1

5  ,n=2

1  ,n=3

                                                               (3) 
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Experiment on time consumption of importing files into HDFS 

In order to verify the merging effect of MBDC on small files, this paper compares the time cost of 

importing the merged files to HDFS. The object of comparison is HDFS normal import, using PS 

algorithm[11] and using MBDC. The total number of normal imported files is 3132, and the number 

of imported files processed by the PS algorithm and MBDC are 65 and 69. The experimental results 

is shown as Fig. 3. As can be seen from the comparative test, MBDC has a 33.8% improvement over 

the normal import, slightly inferior to the PS algorithm. This is mainly due to the fact that the 

algorithm in this paper takes the correlation of files into full consideration and the extra cost involved 

in calculating the correlation between files leads to a slight disadvantage in the comparison of import 

times. 

Experiment on memory consumption of Namenode 

The histogram in Fig. 4 visually shows the consumption of NameNode memory by importing directly, 

using the PS algorithm and using MBDC. It can be seen from the figure that compared with the 

normal import, the PS algorithm and MBDC that take full account of the file block balance have a 

great decrease on the memory consumption of the Namenode. However, due to the trade-off of this 

method of files’ correlation, the number of final merged files is slightly larger, resulting in a slightly 

lower memory overhead in the Namenode than the PS algorithm. 

 

     
         Fig.3 Comparison of time                 Fig.4 Comparison of memory  

consumption of importing small files             consumptions at Namenode 

Experiment on time consumption of file access 

In order to verify the optimization effect of MBDC on file access, this paper uses cache to deal with 

the access procedures of small files. We caches the block contents of the current access and prioritizes 

the data in the cache when accessing the file. The cache size is 1GB, about 8 times the block size. 

Cache replacement strategy is FIFO. According to the user's habit of visiting, this paper tests the 

access time of 500,1000,1500,2000 small files respectively. 

 

 
Fig.5 Comparison of time consumption of data access 

 

  Test results as Fig.5 shown. As can be seen from the figure, compared with the default HDFS 

access method and the access method using PS algorithm storage, the algorithm greatly reduces the 
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access time and improves the access efficiency. This is mainly due to MBDC is more fully than the 

PS algorithm to the relevant files in the same block, making the cache hit rate extremely high, 

effectively reducing the time consumption of I/O between client and Namenode.  

Conclusions 

This paper, aiming at the defects of Hadoop distributed file system for small file storage, taking into 

account the correlation between the files and the size of the file after the merger of these two factors, 

puts forward an optimized merge algorithm, MBDC. It is based on the substantial optimization for 

HDFS storage efficiency of small files, to ensure efficient file access. The experimental results show 

that MBDC can effectively improve the import efficiency of small files and solve the bottleneck of 

Namenode memory in the aspect of storage optimization of small files, and greatly improve the 

efficiency of reading related files. The disadvantages of this approach are a) a certain degree of time 

consumption associated with increasing file size as computing correlation of files; b) there is no 

obvious advantage in random access to small files. Storage optimization of small files on HDFS still 

needs further study.   
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