
Instance Expansion Algorithm for Micro-service with Prediction

Qing Lin, Jinhuan Wang, Jing Wang

School of Intelligence Science and Information Engineering

Xi’an Peihua University, Xi’an, China

530610232@qq.com, 360635476@qq.com, 369607673@qq.com

Keywords: Micro-service; Instance expansion; Prediction; Maximum correntropy criterion

Abstract: Instances expansion of micro-service consumes time for constructing new instances, it

can’t satisfy the requirement of low latency service, such as scientific calculation workflows. In

order to reduces the instance expansion time, an instance expansion algorithm for micro-service

with prediction is proposed in this letter, which sets correntry as cost function and uses MCC

(Maximum Correntropy Criterion) to filter the burst service requirements to improve the accuracy

of prediction, and use stochastic gradient descent algorithm to train the data set to predict the

required micro-service instances in the next time. The performance of the proposed algorithm are

analysed in real experiment telecom office with the compared ones using A/B test, and the

experiment results show that the proposed algorithm has 70% less time of instance expansion than

the compared ones, and the accuracy of the proposed algorithm is 20% more than the compared one

which uses LMS as the cost function.

1 Introduction

Micro-service architecture is easier to deploy, update and expand than monolithic architecture[1].

It has been put into practice by Google, Facebook, Microsoft, Netflex. The micro-service

architecture is capable of expanding horizontally by constructing new instances for the increasing

service load. However, the existed micro-service expanding mechanisms use static algorithms to

construct micro-service instances, they consume time for constructing new instances when new

services come and can’t satisfy the requirement of low latency services. Paper 2 provides a

container-based resource assignment algorithm to initialize micro-service instances. Paper 3

provides a resource management algorithm for heterogeneous scientific calculation workflows.

They are all static algorithms and consuming extra time when be used in the scenario of

micro-service expansion. In order to reduce the time for constructing new micro-service instances in

the scenario of micro-service expansion, an instance expansion algorithm with prediction is

provided in this letter to pre-construct micro-service instances for eliminating the constructing time

of new micro-service instances when service requirements come. As entropy of co-relation

(correntropy) depicts the high-order moments between the prediction and real outputs[4], this

algorithm sets correntropy as the cost function and uses MCC (Maximum Correntropy Criterion) to

filter the burst service requirements, uses stochastic gradient descent algorithm to train the system

and predict the future service requirement for micro-service instances. The performance of the

proposed algorithm and compared ones are analysed in the real experimental telecom office to attest

the advantages of the proposed algorithm in this letter. The contributions of this paper are described

as follows: 1) This paper proposes prediction algorithm to reduce the time for instances expansion

of micro-service for the first time; 2) This paper sets MCC as cost function to filter the burst service

requirements, which could affect the accuracy of the prediction.

2 Instances Expansion Algorithm for Micro-service with Prediction

In order to predict the instance of micro-service with burst requirements, the cost function of the

prediction system is defined as formula(1) to describe the correntropy of prediction output and

prediction, which could filter the non-liner noise of system. 𝑘(∙) is Gaussian kernel function and

333Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

2018 Joint International Advanced Engineering and Technology Research Conference (JIAET 2018)
Advances in Engineering Research (AER), volume 137

𝑒 = 𝑦 − 𝑥 depicts the error between real output and predicted. The historical record of

micro-service instances is recorded as 𝑋𝑖, and the predicted result is marked as 𝑌.
𝑉(𝑌, 𝑋) = 𝐸(𝑘(𝑌 − 𝑋)) = ∬𝑘(𝑦 − 𝑥)𝑓𝑌𝑋(𝑦, 𝑥)𝑑𝑦𝑑𝑥 = ∫𝑘(𝑒) 𝑑𝑒 (1)

 𝑘(∙) = 𝐺(∙) =
1

√2𝜋𝜎
𝑒
−
(∙)2

2𝜎2 (2)

Parzen window estimation is used to get the approximate expression of (1), which is the defined

cost function presented in (3), and gets the maximum value of it to get the MCC.

 𝑣(𝑦, 𝑥) =̂ 1

𝑁
∑ 𝐺𝜎(𝑦𝑖 − 𝑥𝑖) =
𝑁
𝑖=1

1

𝑁

1

√2𝜋𝜎
∑ 𝑒

−
(𝑦𝑖
𝑅−𝑦𝑖

𝐸)
2

2𝜎2𝑁
𝑖=1 (3)

The real output of and the depicted output of the proposed algorithm are marked as 𝑦𝑖
𝑅 and

𝑦𝑖
𝐸 = 𝑊𝑛

𝑇 ∙ 𝑋𝑖 respectively, in which 𝑊𝑛
𝑇 is the vector weight of the neural network in the

proposed algorithm. In order to get the optimal vector weight for getting the maximum cost function,

stochastic gradient descent algorithm is used to modify the vector weight as (4) to (6), in which η

is the learning rate.

 𝑊(𝑛 + 1) = 𝑊(𝑛) + 𝜂𝛻𝑣(𝑦, 𝑥)̂ (4)

 𝛻𝑣(𝑦, 𝑥)̂ =
1

𝑁

1

√2𝜋𝜎3
∑ 𝑒

−
(𝑦𝑖
𝑅−𝑊𝑛

𝑇∙𝑋𝑖)
2

2𝜎2𝑁
𝑖=1 (𝑦𝑖

𝑅 −𝑊𝑛
𝑇 ∙ 𝑋𝑖)𝑋𝑖 (5)

 𝑊(𝑛 + 1) = 𝑊(𝑛) +
𝜂

𝑁

1

√2𝜋𝜎3
∑ 𝑒

−
(𝑦𝑖
𝑅−𝑊𝑛

𝑇∙𝑋𝑖)
2

2𝜎2𝑁
𝑖=1 (𝑦𝑖

𝑅 −𝑊𝑛
𝑇 ∙ 𝑋𝑖)𝑋𝑖 (6)

3 Performance Analysis

In order to analyse the performance parameters of micro-services initialization supported in

paper 5, the proposed algorithm and compared ones are performed in the experimental telecom

office with A/B test, in which all the performed algorithms are loaded on the same ratio of service

flows equally. The hardware environment of the experiment contains 16 blades of HP C7000 and

software environment is OPS+ system of ZTE. The training data set contains the number of

micro-service instances in the last 30 days.

3.1 Performance with Constant Flavour of Micro-service Instances

In order to analysis the performance of the proposed algorithm, in the same production test

business parameters, we use the algorithm of [6], literature [2], literature [7] to replace the proposed

algorithm, and verify the performance of different algorithms in the micro-service management

framework. In order to facilitate the analysis, the literatures [6], the literature [2], the literature [7]

and the algorithm mentioned in this paper are respectively described as MSV, MSH, MSC and

MSA.

When the size of a micro-service instance is fixed, the maximum number of micro-service

instances on each physical server are consistent and the remaining computing resources are

consistent. In the experiment, 𝑇𝑣 is set to 1, 𝑇𝑟 is set to 6, is less than the one of the smallest

micro-service instances computational resources.

Figure 1. Analysis of resource fragments Figure 2. Services acceptance ratio

Time Units
100 200 300 400 500 600 700 800 900 1000 1100

R
e
s
o

u
rc

e
 F

ra
g

m
e

n
ts

5

6

7

8

9

10

11

12

MSV

MSH

MSC

MSA

Time Units
100 200 300 400 500 600 700 800 900 1000 1100

S
e

rv
ic

e
 A

c
c
e
p

ta
n

c
e

 R
a

ti
o

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MSV
MSH
MSC
MSA

334

Advances in Engineering Research (AER), volume 137

Fig.1 shows a curve of resource fragments along the time, at which point the specification of the

micro-service instance is 2 VCPUs and 16GB memory. As time goes on, both the proposed

algorithm and the contrast algorithms have the fragments of resources, but the proposed algorithm

has fewer resource fragments, which shows that the proposed algorithm can select the most suitable

micro-service instance to host the user’s service requirement.

Fig.2 shows the user’s service requirement acceptance rate. As can be seen from the graph, the

acceptance rate of the proposed algorithm is higher than that of the comparison algorithm, because

the acceptance rate of the service requirement is inversely proportional to the number of resource

fragments. The more fragmented the resource, the more the total remaining resources of the

physical server are, but any one fragment can not meet the resources of the service requirement,

which causing the user’s service requirement to be blocked.

Figure 3. Resource fragments with different Figure 4. Service acceptance ration with different

 flavors of micro-services flavors of micro-services

Fig.3 shows the use of the same resource fragment thresholds and the resource fragments of the

proposed algorithm when the micro-service instance specification is set differently.

As can be seen from the diagram, if the resource fragment threshold does not change, when the

micro-service instance specification becomes larger, the probability of the remaining computing

resources on the physical server cannot create new micro-service instances increases, and more

resource fragments occurs. Conversely, when the micro-service instance specification becomes

small, the granularity of distributed micro-service instances on the physical server becomes smaller,

which can accommodate more micro-service instances and less resource fragmentation.

Fig.4 shows the acceptance rate of service requirement under different Micro service instance

specifications, because the acceptance rate of the business request is inversely proportional to the

fragments of the resources, the number of resource fragments is higher when the micro-service

instance is larger, resulting in a lower acceptance rate of the service request.

3.2 Performance with Variable Flavour of Micro-service Instances

Figure 5. Resource fragments along with different Figure 6. Service acceptance ration along with different

flavors of micro-services flavors of micro-services

Time Units
100 200 300 400 500 600 700 800 900 1000 1100

R
e

s
o

u
rc

e
 F

ra
g

m
e
n

ts

4

5

6

7

8

9

10

11

12

Time Units
100 200 300 400 500 600 700 800 900 1000 1100

S
e

rv
ic

e
 A

c
c
e
p

ta
n

c
e

 R
a

ti
o

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Units
100 200 300 400 500 600 700 800 900 1000 1100

R
e

s
o

u
rc

e
 F

ra
g

m
e
n

ts

5

6

7

8

9

10

11

12

MSV
MSH
MSC
MSA

Time Units
100 200 300 400 500 600 700 800 900 1000 1100

S
e

rv
ic

e
 A

c
c
e
p

ta
n

c
e

 R
a

ti
o

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MSV
MSH
MSC
MSA

335

Advances in Engineering Research (AER), volume 137

Fig.5 shows a curve of resource fragments along the time, as you can see from the figure, as the

micro-service instance specification changes over time, more resource fragments occurs on the

physical server than the fixed micro-service instance specification. Compared with the comparison

algorithm, because the optimization performance of the proposed algorithm is better than the

comparison algorithm, the physical server appears less resource fragmentation.

As shown in Fig.6, when the specification of a micro-service instance is changed, the service

request acceptance rate of the proposed algorithm is higher than the comparison algorithm because

the acceptance rate of the service request is inversely proportional to the resource fragments.

However, along with the time, the resource fragments on the physical server increases, and the

acceptance rate of the proposed algorithm and the comparison algorithm will decrease.

3.3 Running Time Analysis

The time of instance expansion of the proposed algorithm and [2], [3] is presented in Fig.7,

which are marked as IEA-MCC, IA-CB and IA-SA. As the figure presents, the time for instance

expansion of the proposed algorithm is almost 70% less than the compared algorithms. The time for

instances expansion of the compared algorithm in [2] and [3] have two parts, which are the

construction time and discovery time of new instances. The reduction time of the proposed

algorithm than the compared algorithms is just the construction time of new instances in the

compared algorithms.

Figure 7. The time of instances expansion for the Figure 8. The number of micro-service instances for

proposed algorithm and compared algorithms real and prediction

The real records and the prediction results of the proposed algorithm and the compared one that

uses LMS (Least Mean Square) are presented in Fig.8. The standard deviation between the

prediction results and real records of the proposed algorithm and the compared one is presented in

Fig.9 to analyse the accuracy of the proposed algorithm. The proposed algorithm and the compared

one are marked as IEA-MCC and IEA-LMS respectively.

Figure 9. Standard deviation of the proposed algorithm and compared one

Number of instances for one micro-service in average
3 4 5 6 7 8 9 10 11

R
u
n

n
in

g
 t

im
e
 (

m
s
)

200

300

400

500

600

700

800

900

1000

IEA-MCC
IA-CB
IA-SA

Days in dada set
1 5 10 15 20 25 30N

u
m

b
e

r
o

f
m

ic
ro

-s
e
rv

ic
e

 i
n

s
ta

n
c
e
s
 f

o
r

re
a

l
a

n
d
 p

re
d
ic

ti
o

n

60

62

64

66

68

70

72

74

76

78

80

Real number
IEA-MCC
IEA-LMS

Number of experiments
20 30 40 50 60 70 80 90 100

S
ta

n
d
a

rd
 d

e
v
ia

ti
o
n

 o
f
e

rr
o

r

1

1.5

2

2.5

3

3.5

4

IEA-MCC
IEA-LMS

336

Advances in Engineering Research (AER), volume 137

Form Fig.8 and Fig.9, the proposed algorithm in this letter has almost 20% lower standard

deviation of error than the compared one. The reason is that the training data set contains burst

service requirements and they could affect the accuracy of prediction. The algorithm proposed in

this letter uses MCC as the cost function, in which the burst service requirement is recognized as

non-Gaussian noise, to filter the burst service requirement and reduce the influence of them.

4 Conclusions

This letter proposes an instance expansion algorithm with prediction, which uses prediction

algorithm to predict how many micro-service instances need to be pre-constructed to satisfy the

service requirement to eliminate the time of constructing new micro-service instances. Furthermore,

in order to increase the accuracy of prediction, the prediction algorithm sets correntroy as the cost

function and uses MCC to filter the burst service requirements. The time of instance expansion of

the proposed algorithm is compared with the ones without prediction mechanism, and the prediction

accuracy of the proposed algorithm is compare with the one with LMS cost function in the

experimental telecom office with A/B test. The experiment results show that the proposed algorithm

reduces the time of instances expansion almost by 70% than algorithms without prediction, and the

standard deviation of error of the proposed algorithm is 20% less than the one of prediction

algorithm with LMS cost function in average with the real service requirement. The proposed

algorithm in this letter introduces prediction mechanism into instances expansion micro-service for

the first time, and this letter gives references to design the instances expansion algorithm with

prediction.

References

[1] Alshuqayran N, Ali N, Evans R. 2016. A Systematic Mapping Study in Microservice

Architecture, International Conference on Service-Oriented Computing and Applications, 10,

44-51.

[2] Kan C. 2016. DoCloud: An elastic cloud platform for Web applications based on Docker,

International Conference on Advanced Communication Technology, 7, 478-483.

[3] Nguyen P, Nahrstedt K. 2017. MONAD: Self-Adaptive Micro-Service Infrastructure for

Heterogeneous Scientific Workflows, International Conf. on Autonomic Computing, 9, 187-196.

[4] Hua Q, Wentao M, Jihong Z, et al. 2013. Kernel Least Mean Kurtosis Based Online Chaotic

Time Series Prediction, Chinese Physics Letters, 30(11), 468-477.

[5] Zhu X, Gong X, Tsang D. 2017. The optimal macro control strategies of service providers and

micro service selection of users: quantification model based on synergetics, Wireless Networks,

1-14.

[6] Guo D, Wang W, Zeng G, et al. 2016. Microservices Architecture Based Cloudware

Deployment Platform for Service Computing, IEEE Service-Oriented System Engineering,358-363.

[7] Nguyen P, Nahrstedt K. 2017. MONAD: Self-Adaptive Micro-Service Infrastructure for

Heterogeneous Scientific Workflows, IEEE International Conference on Autonomic Computing,

9:187-196.

337

Advances in Engineering Research (AER), volume 137

