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Abstract: Instances expansion of micro-service consumes time for constructing new instances, it 

can’t satisfy the requirement of low latency service, such as scientific calculation workflows. In 

order to reduces the instance expansion time, an instance expansion algorithm for micro-service 

with prediction is proposed in this letter, which sets correntry as cost function and uses MCC 

(Maximum Correntropy Criterion) to filter the burst service requirements to improve the accuracy 

of prediction, and use stochastic gradient descent algorithm to train the data set to predict the 

required micro-service instances in the next time. The performance of the proposed algorithm are 

analysed in real experiment telecom office with the compared ones using A/B test, and the 

experiment results show that the proposed algorithm has 70% less time of instance expansion than 

the compared ones, and the accuracy of the proposed algorithm is 20% more than the compared one 

which uses LMS as the cost function. 

1 Introduction 

Micro-service architecture is easier to deploy, update and expand than monolithic architecture[1]. 

It has been put into practice by Google, Facebook, Microsoft, Netflex. The micro-service 

architecture is capable of expanding horizontally by constructing new instances for the increasing 

service load. However, the existed micro-service expanding mechanisms use static algorithms to 

construct micro-service instances, they consume time for constructing new instances when new 

services come and can’t satisfy the requirement of low latency services. Paper 2 provides a 

container-based resource assignment algorithm to initialize micro-service instances. Paper 3 

provides a resource management algorithm for heterogeneous scientific calculation workflows. 

They are all static algorithms and consuming extra time when be used in the scenario of 

micro-service expansion. In order to reduce the time for constructing new micro-service instances in 

the scenario of micro-service expansion, an instance expansion algorithm with prediction is 

provided in this letter to pre-construct micro-service instances for eliminating the constructing time 

of new micro-service instances when service requirements come. As entropy of co-relation 

(correntropy) depicts the high-order moments between the prediction and real outputs[4], this 

algorithm sets correntropy as the cost function and uses MCC (Maximum Correntropy Criterion) to 

filter the burst service requirements, uses stochastic gradient descent algorithm to train the system 

and predict the future service requirement for micro-service instances. The performance of the 

proposed algorithm and compared ones are analysed in the real experimental telecom office to attest 

the advantages of the proposed algorithm in this letter. The contributions of this paper are described 

as follows: 1) This paper proposes prediction algorithm to reduce the time for instances expansion 

of micro-service for the first time; 2) This paper sets MCC as cost function to filter the burst service 

requirements, which could affect the accuracy of the prediction. 

2 Instances Expansion Algorithm for Micro-service with Prediction 

In order to predict the instance of micro-service with burst requirements, the cost function of the 

prediction system is defined as formula(1) to describe the correntropy of prediction output and 

prediction, which could filter the non-liner noise of system. 𝑘(∙) is Gaussian kernel function and 
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𝑒 = 𝑦 − 𝑥  depicts the error between real output and predicted. The historical record of 

micro-service instances is recorded as 𝑋𝑖, and the predicted result is marked as 𝑌. 
𝑉(𝑌, 𝑋) = 𝐸(𝑘(𝑌 − 𝑋)) = ∬𝑘(𝑦 − 𝑥)𝑓𝑌𝑋(𝑦, 𝑥)𝑑𝑦𝑑𝑥 = ∫𝑘(𝑒) 𝑑𝑒                     (1) 

                 𝑘(∙) = 𝐺(∙) =
1
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2𝜎2                                       (2) 

Parzen window estimation is used to get the approximate expression of (1), which is the defined 

cost function presented in (3), and gets the maximum value of it to get the MCC. 

    𝑣(𝑦, 𝑥) =̂ 1

𝑁
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The real output of and the depicted output of the proposed algorithm are marked as 𝑦𝑖
𝑅 and 

𝑦𝑖
𝐸 = 𝑊𝑛

𝑇 ∙ 𝑋𝑖  respectively, in which 𝑊𝑛
𝑇  is the vector weight of the neural network in the 

proposed algorithm. In order to get the optimal vector weight for getting the maximum cost function, 

stochastic gradient descent algorithm is used to modify the vector weight as (4) to (6), in which η 

is the learning rate. 

            𝑊(𝑛 + 1) = 𝑊(𝑛) + 𝜂𝛻𝑣(𝑦, 𝑥)̂                                     (4) 
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𝑇 ∙ 𝑋𝑖)𝑋𝑖                         (5) 
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3 Performance Analysis 

In order to analyse the performance parameters of micro-services initialization supported in 

paper 5, the proposed algorithm and compared ones are performed in the experimental telecom 

office with A/B test, in which all the performed algorithms are loaded on the same ratio of service 

flows equally. The hardware environment of the experiment contains 16 blades of HP C7000 and 

software environment is OPS+ system of ZTE. The training data set contains the number of 

micro-service instances in the last 30 days.  

3.1 Performance with Constant Flavour of Micro-service Instances 

In order to analysis the performance of the proposed algorithm, in the same production test 

business parameters, we use the algorithm of [6], literature [2], literature [7] to replace the proposed 

algorithm, and verify the performance of different algorithms in the micro-service management 

framework. In order to facilitate the analysis, the literatures [6], the literature [2], the literature [7] 

and the algorithm mentioned in this paper are respectively described as MSV, MSH, MSC and 

MSA.  

When the size of a micro-service instance is fixed, the maximum number of micro-service 

instances on each physical server are consistent and the remaining computing resources are 

consistent. In the experiment, 𝑇𝑣 is set to 1, 𝑇𝑟 is set to 6, is less than the one of the smallest 

micro-service instances computational resources. 

   

Figure 1.  Analysis of resource fragments                    Figure 2.  Services acceptance ratio 
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Fig.1 shows a curve of resource fragments along the time, at which point the specification of the 

micro-service instance is 2 VCPUs and 16GB memory. As time goes on, both the proposed 

algorithm and the contrast algorithms have the fragments of resources, but the proposed algorithm 

has fewer resource fragments, which shows that the proposed algorithm can select the most suitable 

micro-service instance to host the user’s service requirement. 

Fig.2 shows the user’s service requirement acceptance rate. As can be seen from the graph, the 

acceptance rate of the proposed algorithm is higher than that of the comparison algorithm, because 

the acceptance rate of the service requirement is inversely proportional to the number of resource 

fragments. The more fragmented the resource, the more the total remaining resources of the 

physical server are, but any one fragment can not meet the resources of the service requirement, 

which causing the user’s service requirement to be blocked. 

      
Figure 3.  Resource fragments with different              Figure 4.  Service acceptance ration with different 

 flavors of micro-services                                  flavors of micro-services 

Fig.3 shows the use of the same resource fragment thresholds and the resource fragments of the 

proposed algorithm when the micro-service instance specification is set differently. 

As can be seen from the diagram, if the resource fragment threshold does not change, when the 

micro-service instance specification becomes larger, the probability of the remaining computing 

resources on the physical server cannot create new micro-service instances increases, and more 

resource fragments occurs. Conversely, when the micro-service instance specification becomes 

small, the granularity of distributed micro-service instances on the physical server becomes smaller, 

which can accommodate more micro-service instances and less resource fragmentation. 

Fig.4 shows the acceptance rate of service requirement under different Micro service instance 

specifications, because the acceptance rate of the business request is inversely proportional to the 

fragments of the resources, the number of resource fragments is higher when the micro-service 

instance is larger, resulting in a lower acceptance rate of the service request. 

3.2 Performance with Variable Flavour of Micro-service Instances 

   
Figure 5.  Resource fragments along with different       Figure 6.  Service acceptance ration along with different 

flavors of micro-services                                  flavors of micro-services 
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Fig.5 shows a curve of resource fragments along the time, as you can see from the figure, as the 

micro-service instance specification changes over time, more resource fragments occurs on the 

physical server than the fixed micro-service instance specification. Compared with the comparison 

algorithm, because the optimization performance of the proposed algorithm is better than the 

comparison algorithm, the physical server appears less resource fragmentation. 

As shown in Fig.6, when the specification of a micro-service instance is changed, the service 

request acceptance rate of the proposed algorithm is higher than the comparison algorithm because 

the acceptance rate of the service request is inversely proportional to the resource fragments. 

However, along with the time, the resource fragments on the physical server increases, and the 

acceptance rate of the proposed algorithm and the comparison algorithm will decrease. 

3.3 Running Time Analysis 

The time of instance expansion of the proposed algorithm and [2], [3] is presented in Fig.7, 

which are marked as IEA-MCC, IA-CB and IA-SA. As the figure presents, the time for instance 

expansion of the proposed algorithm is almost 70% less than the compared algorithms. The time for 

instances expansion of the compared algorithm in [2] and [3] have two parts, which are the 

construction time and discovery time of new instances. The reduction time of the proposed 

algorithm than the compared algorithms is just the construction time of new instances in the 

compared algorithms. 

     
Figure 7.  The time of instances expansion for the        Figure 8.  The number of micro-service instances for 

proposed algorithm and compared algorithms                         real and prediction 

The real records and the prediction results of the proposed algorithm and the compared one that 

uses LMS (Least Mean Square) are presented in Fig.8. The standard deviation between the 

prediction results and real records of the proposed algorithm and the compared one is presented in 

Fig.9 to analyse the accuracy of the proposed algorithm. The proposed algorithm and the compared 

one are marked as IEA-MCC and IEA-LMS respectively. 

 

Figure 9.  Standard deviation of the proposed algorithm and compared one 
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Form Fig.8 and Fig.9, the proposed algorithm in this letter has almost 20% lower standard 

deviation of error than the compared one. The reason is that the training data set contains burst 

service requirements and they could affect the accuracy of prediction. The algorithm proposed in 

this letter uses MCC as the cost function, in which the burst service requirement is recognized as 

non-Gaussian noise, to filter the burst service requirement and reduce the influence of them. 

4 Conclusions 

This letter proposes an instance expansion algorithm with prediction, which uses prediction 

algorithm to predict how many micro-service instances need to be pre-constructed to satisfy the 

service requirement to eliminate the time of constructing new micro-service instances. Furthermore, 

in order to increase the accuracy of prediction, the prediction algorithm sets correntroy as the cost 

function and uses MCC to filter the burst service requirements. The time of instance expansion of 

the proposed algorithm is compared with the ones without prediction mechanism, and the prediction 

accuracy of the proposed algorithm is compare with the one with LMS cost function in the 

experimental telecom office with A/B test. The experiment results show that the proposed algorithm 

reduces the time of instances expansion almost by 70% than algorithms without prediction, and the 

standard deviation of error of the proposed algorithm is 20% less than the one of prediction 

algorithm with LMS cost function in average with the real service requirement. The proposed 

algorithm in this letter introduces prediction mechanism into instances expansion micro-service for 

the first time, and this letter gives references to design the instances expansion algorithm with 

prediction. 
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