

Research on Measurement and Estimation Method for Designed Size of
Aviation Equipment Software

LIU Shuang1, a *, GUO Ji Lian2,b and SHEN An Wei3,c
1Graduate school, Air Force Engineering University, Xi＇an 710038，China

2 Aeronautical Engineering College, Air Force Engineering University, Xi'an Shanxi 710038, China
3Refit Department of Aviation Personnel, Air Force Harbin Flight Academy, China

aLIU_Shuang026@163.com, bguojilian@163.com, czjsaw@foxmail.com

Keywords: Case Point; Software Cost; Software Size; Echo State Networks

Abstract. How to estimate the aviation equipment software size accurately is the precondition of
carry out the estimating software R&D cost. This paper analysis the common case point method to
estimate the software size. And then the paper point out three shortcomings of the method. That is the
method can’t use the single point to estimate the software size. The method is discontinuity in
dividing the complexity degree of use cases. The technical complexity factor, environmental
complexity factor and the software size have not necessity connection. This paper put up with an
improved case point method to estimate the software size. The new method distinguishes every single
case clearly, and calculates every case as separate when calculating the software. The new method
adjusts the use cases’ weight of complexity degree. That is use continuous function curve instead of
discontinuity in dividing the complexity degree of use cases. The method no longer consider
technical complexity factor, environmental complexity factor. The method also considers the
non-functional requirements and project risk factors when evaluating the workload and costs. The
case analysis shows that the improved method can estimate the software size more accurate.

Introduction

During estimation of expenses for aviation equipment software, the measurement of software size is
always the key and difficult problem drawing high attention. Software size must be measured
accurately, so software expenses can be estimated accurately [1-3]. Reference [4] illustrates the close
relations between software size measurement and expense estimation based on two practical cases.
Professor Boehm also pointed out: “software size is the most important input of COCOMOII model”.
Hence, both the academic circle and the industrial circle focus on finding a scientific, rational and
effective size measurement method for accurate measurement of software size.

Zhu Anjiang [5] researched the earlier stage of software life cycle to estimate software size, and
proposed an earlier function point method based on the standard function point method. With
“Research and Practice of Function Point Analysis Method in Software Size Estimation” as the theme,
Tu Jishan [6] researched computation rules of the function point analysis method and developed a
function point computation tool supporting the implementation specifications on this basis. Above
research achievements were obtained in software size estimation of general software.

Based on research of aviation equipment software, the paper analyzes common methods for
software size measurement and proposes an improved use case point method aiming at defects of the
traditional use case point method. The improved use case point method is changed a lot based on the
traditional use case point method, so its accuracy could not be verified through direct comparison
with the traditional use case method. Hence, an echo state network is introduced and relations
between size and workload are established to verify accuracy of the improved use case point method
[7-10].

3rd International Conference on Automation, Mechanical Control and Computational Engineering (AMCCE 2018)

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Engineering Research, volume 166

9

Fundamentals of Use Case Point Method
At present, the industrial circle and the academic circle have proposed a lot of methods for size
measurement. Methods concerning code line, function point and relevant extension modes, predicted
object point, use case point and so forth are commonly used, wherein the use case point method is
applied most widely [11].

With the technological development, object-oriented design technologies are applied to modern
software design more and more extensively. The unified modeling language (UML) is used more
widely for research and development. Hence, the UML-based size measurement method emerges.
The Use Case Point is the most representative method[12].

Gustav Karner proposed the Use Case Point Method in 1993. Basic ideas are as follows: use cases
and their actuators are recognized according to functional demands and definitions of software
projects, and complexities are judged according to rules; then, use case points are computed
according to the complexities in a classified manner; use case points are converted into research and
development workloads according to specific conversion relations. Use steps of the use case point
method are as follows:

1) Total unadjusted actuator weight (UAW) is computed. According to interaction complexities
between the system and actuators, the actuators are classified into “complex”, “average” and
“simple”, wherein corresponding weights are 3, 2 and 1, respectively.

1=
= ×∑

n

i
UAW N W (1)

2) Unadjusted use case weight (UUCW) is computed. It is determined according to the number of
transactions of use cases described in the scene. Transaction is defined as an execution course among
a series of tasks. Completion of a task depends on completion of all the transactions. Classification is
conducted based on the quantity of transactions in the use case.

1=
= ×∑

n

i
UUCW N W (2)

Where: N is the quantity of use cases of the corresponding type; W is the corresponding weight; n
is the type of use case. If the quantity of transactions is smaller than or equal to 3, we can define the
use case type to be simple, with weight of 5; if the quantity of transactions is 4-7, we define the use
case type to be average, with weight of 10; if the quantity of transactions is equal to or larger than 7,
we deem the use case type to be complex, with weight of 15.

3) Unadjusted use case point (UUCP) is computed. UUCW and UAW are added together, so the
unadjusted use case point UUCP can be obtained.

= +UUCP UAW UUCW (3)
4) Technological complexity factor (TCF) and environmental complexity factor (ECF) are

computed. The technological complexity factors embody influences of non-functional demands of
projects on the projects, including 13 factors.

()
13

1

0 6 0 01

=

= + ×



= ×


∑ i i
i

TCF . . TFactor

TFactor W R
 (4)

Where: Wi is the weight and Ri is the relevancy. They have the same significance in computation
of environmental complexity.

()
8

1

1 4 0 03

=

= + − ×



= ×


∑ i i
i

ECF . . EFactor

EFactor W R
 (5)

Advances in Engineering Research, volume 166

10

5) Use case point (UCP) and workload are computed. Use case points can be obtained according to
influences of TCF and ECF on the unadjusted use case point.

= × ×UCP UUCP TCF EF (6)
While proposing the method at the very beginning, Karner suggested that the workload of each use

case point was 20 man-hours. Based on Karner’s research, Ribu deemed the workload to be 15-30
man-hours. Conversion between scale and workload is as follows:

Workload (man-hour)=quantity of use case points × workload (man-hour) of each use case point (7)
Software size measurement is conducted in modern software projects which utilize object-oriented

design methods more and more extensively. Research and application of the use case point method
will become popular. Especially at the earlier stage of software project research and development, the
software size can be measured rapidly and accurately through determination of functional demands
and definitions of the software system. A lot of existing research references concerning the use case
point method show that the use case point method is valid. Application of the use case point method
in software size measurement has the following advantages: (1) computation is simple and
convenient, while it does not cost a lot of time and workloads. (2) It does not rely on programming
language and research and development technologies, and estimation can be conducted
independently. (3) It can be understood easily, and the system scope can be determined rapidly
according to the demand definition. (4) With the technology of structurizing, classified arrangement
and analysis can be conducted more effectively. (5) The use case point method depends on system
demands, while recognition is simple and visualized. (6) The use case point method can be applied to
other measurement models and can measure the software scale as the basis. In addition, the use case
point method is centered on users and based on use rather than be design-oriented or system-oriented,
so it is more stable and robust than other methods.

In object-oriented software design and R&D, the use case modeling has been widely used by R&D
staffs and is applied to capture and presentation of functional demands of systems at the earlier stage
of software R&D. Use case is an obvious and simple idea. Use case defines frame and functional
demands of projects at the earlier project stage. Hence, during measurement of software size, the use
case point method can be used to estimate size of R&D software and estimate software expenses.

Through profound research and analysis of the traditional use case point method, we could find a
lot of advantages of the use case point method as well as some deficiencies. Detailed analysis will be
conducted as follows.

Failure to Measure Single Use Case. In management of software R&D projects, distribution
work is often conducted based on use cases. Hence, size and corresponding workload of each use case
must be known, and project plans must be formulated on the basis. However, the traditional use case
point method cannot estimate single use case, retarding project management and enlarging errors of
software size estimation. On the other side, during computation of unadjusted actuator weights, the
traditional use case point method takes software project or functional system as the units in general.
In other words, all the use cases contained by the whole project or system are measured. It is the same
with measurement of actuators. Therefore, actuators contained by each use case in the project or
system cannot be defined and quantified.

Discontinuity in Grading of Use Case Complexity. During computation of unadjusted use case
weights, the complexity of use cases depends on the quantity of transactions contained in use cases.
However, the traditional use case point method is discontinuous in complexity grading, so the
determined complexity weights are not accurate. Three use cases are used as the case for illustration,
as shown in Table 1.

Table 1 Determination of Use Case Complexity Wight with Traditional Use Case Point Method
Project Use Case 1 Use Case 2 Use Case 3

Quantity of transactions 3 4 6
Complexity Low Average Average

Weight 5 10 10

Advances in Engineering Research, volume 166

11

According to several typical situations given in the table, we can find: (1) According to the
traditional determination rules of use case complexity weights, use case 2 and use case 3 are classified
to the “average” complexity, and the same weight 10 is distributed. However, use case 3 has 2 more
transactions than use case 2. Obviously, the use case 3 is more complex. (2) Use case 1 containing 3
transactions is classified to the low complexity, and the corresponding weight 5 is distributed.
However, if one transaction is added for use case 1 (use case 1 is transformed to use case 2), the use
case 1 will be classified to the “average” complexity according to the complexity matrix.

According to the analysis results, we can find that the traditional use case point method is
disadvantageous in division discontinuity during determination of complexity weights of use cases,
while the use has certain randomness. If these situations appear in the same software project, the
measurement results will not satisfy actual situations. Especially under huge quantity of use cases,
errors will be huge.

No Inevitable Relations between Technological Complexity Factors, Environmental
Complexity Factors and Software Size. Technological complexity factors and environmental
complexity factors are mainly used to reflect nonfunctional demands of software projects as well as
influences of project risks on software research and development, but they have no inevitable
relations with inherent size of software. Software size depends on functional demands defined by
software projects or tasks to be completed. The software size will be larger when there are more
functions which are more complex or tasks to be completed are more difficult. On the contrary, if the
functions to be achieved are fewer or less difficult or the tasks to be completed are easier, the software
size will be smaller.

Technological complexity factors and environmental complexity factors will not influence
functions to be achieved or tasks to be completed by a software system. For example, distributed
system, easiness in installation, easiness in use or other technological complexity factors are
unrelated with functions to be achieved by software. Hence, they do not have direct influences on
measurement of software size. For another example, development experience of application program,
ability of leading analysis personnel, difficulty of programming language and other environmental
complexity factors are also unrelated with functional demands of software. Hence, they do not have
direct influences on measurement of software size.

Therefore, technological complexity factors and environmental complexity factors do not have
inevitable associations with software size. They shall not be considered during size estimation. Their
influences shall be considered during estimation of workloads and expenses.

In conclusion, the traditional use case point method is deficient in measurement of software size. It
will give rise to large errors in specific use. Especially when the software system is large and complex,
errors will be huge. Hence, in order to measure the software size more effectively, it is necessary to
improve the traditional method so as to obtain more accurate size measurement results and lay a good
foundation for estimation of software workloads and expenses.

Research on Improved Use Case Point Method
Code line method and the method of functional point and its extension have some problems in
traditional software size measurement, but they still achieve good effects. However, in modern
software engineering oriented to object design, it could hardly be effectively applicable and could not
embody the feature of software research and development of object-oriented design. Through
prediction of object points, the software size of object-oriented design can be measured effectively,
but its application is complicated, while confirmation and investigation at the later R&D stage could
hardly be achieved. The use case point method has unique advantages in solution of methods
concerning modern software size measurement, but it still have some problems. This section
conducts research based on defects of the traditional use case method.

Aiming at defects of the use case point method analyzed and discussed in the previous section,
improvements are made to the traditional use case point method here. Based on the traditional use
case point method, each use case is distinguished explicitly, and each use case is computed separately

Advances in Engineering Research, volume 166

12

during size computation. The computation mode of use case complexity weights is adjusted.
Continuous function curve takes the place of discontinuous grading in the traditional use case point
method. During computation of software size, technological complexity factors and environmental
complexity factors are not considered any more. Instead, nonfunctional demands and project risk
factors reflected by technological complexity factors and environmental complexity factors are
considered during estimation of workloads and expenses.

The improved use case point method distinguishes single use cases definitely and computes size of
each use case independently. The improved use case point method deletes grading rules of use case
complexity weights, and conducts computation directly according to the quantity of transactions. In
this way, the problem of large errors in measurement of software size with the traditional use case
method can be solved, while each use case conversion point can be computed explicitly.

Use steps of the improved use case point method are as follows:
1. Actuator weight (AW) of each use case is computed. Computation method and steps of AW are

kept the same with computation of UAW in the traditional use case method. According to complexity
of interactions between actuator and system, it is classified into simple, average and complex. A
weight factor is assigned for each type, as shown in Table 2.

Table 2 Distribution Table of Actuator Complexity Weight Factors
Complexity Description Weight

Simple External system with a defined application program interface (API) 1

Average Interaction system in need of a communication protocol (such as TCP/IP);
or person conducting interactions with system by terminal 2

Complex Person interacting with application programs by graphic interface or
W’EB page 3

Weight of actuator (AW) for each use case is computed by the following formula:

1 2 +3= × + × ×AW simple average complex (8)
Where: simple is the quantity of simple actuators; average is the quantity of average actuators;

complex is the quantity of complex actuators.
2. Use case weight (CW) of each use case is computed. Use case weight shall be represented by the

quantity of transactions contained in each use case. If computation is conducted after classification,
as stipulated in the traditional use case method, errors will be large and relations between the quantity
of use case transactions and software size cannot be reflected accurately. Hence, analysis results of a
lot of historical data indicate that computation of use case weights based on direct use of transaction
quantity has better effects. Meanwhile, we can find that the quantity of transactions not only
influences use case weight, but also has significance influences on size of use case point. Hence,
during computation of use case weights and use case points, computation formulas of exponential
form or power function form are used. Through analysis of a lot of data concerning use case weights
and transaction quantity, we can fit the following formula:

15 (1 0.8)= × − TCW (9)
3. Use case point (UCP) of each use case is computed. Size of use case point depends on actuator

weight and use case weight. If a use case contains actuators and transactions with larger quantity and
higher complexity, namely actuator weight and use case weight are larger, the size of use case point
will be larger. On the contrary, if a use case contains fewer or less difficult actuators and transactions,
namely actuator weight and use case weight are smaller, the size of use case point will be smaller. If
actuators contained in each use case are unchanged, the sue case size will be larger if there are more
transactions; otherwise the situation will be contrary. If a single use case has certain quantity of
transactions, the use case size will be larger when there are more actuators with higher complexity.
Through analysis of a lot of data, we fit the computation formula (10) of single use case point, as
follows.

Advances in Engineering Research, volume 166

13

0.5 1.09= ×UCP AW CW (10)

Fig.1 Relation Curve of Use Case Weight and Transaction Quantity

4. Total use case point size of software is computed. All the single use case points in the whole
software system are added together, so the total use case point (TUCP) is obtained.

1=
= ∑

n

i
i

TUCP UCP (11)

According to formulas (8), (9), (10) and (11), the size of software to be estimated is obtained.
Based on the obtained software size, software expenses can be estimated on this basis.

Result Verification Based on Echo State Network

After improvement of the traditional use case point method, it is not verified. The use case point
method improved in the paper is quite different from the traditional use case point method. Use cases
in software are computed separately. Methods for computing use case complexity weights and single
use case size are changed. In computation of use case size, influences of nonfunctional demands and
project risks reflected by technological and environmental complexity factors on the size are not
considered. In view of above reasons, the improved use case point method cannot be compared
directly with the traditional use case point method. It is only feasible to compare software workloads
estimated finally by the method with software workloads estimated by other methods and actual
workloads. On this basis, accuracy of the improved use case point method can be evaluated.

The section selects the novel algorithm of echo state network. A model for conversion from the
software size measured by use case points to workload is established. Technological complexity
factors and environmental complexity factors which are not considered in size measurement are
added through adjustment and taken as input of the conversion model. Other important influential
factors are added based on research and analysis. Workloads are computed by the model.

No fixed formula is set for conversion from software size to workloads. Summarization and
analysis are carried out mainly through continuous collection and accumulation of historical data, as
well as application of methods such as statistical regression. Accurate and reliable estimation
formulas can be obtained. The software size-workload conversion model can be formed gradually.

Analysis of Traditional Conversion Model. At present, most software size-workload conversion
models are established on the basis of an empirical model (Cover1988), such as the traditional use
case point method. The general math expression of these conversion models is as follows:

= ×Effort a Size+b (12)
Where: Effort is the workload; Size is the software size; a and b are parameters, which are

obtained through regression analysis of historical data. Two typical models for linear conversion
from software size to workloads are as follows:

(1) Albrecht/Gaffnef Model

Advances in Engineering Research, volume 166

14

13 39 0 054= − +Effort . . Size (13)
(2) Maston/Barnett/Mellichamp Model

585 7 5 12= +Effort . . Size (14)
However, a lot of research results indicate that nonlinear relations exist between size and workload.

For example, Boehm added a scale factor into COCOMO series models to embody nonlinear
relations between software size and workload; in addition, the estimation model of Putman also
demonstrates the nonlinear relation between software size and workload.

Echo State Network (ESN) is a novel neural network. In comparison with the traditional neural
network, it is characterized in that a reserve pool is composed of nerve cells which are connected in a
random and sparse manner. The reserve pool method determines a brand new signal processing
mechanism, so the nonlinear problem can be solved easily by linear methods.

Based on above analysis, ESN is used to establish a software scale-work load conversion model.
Basic steps for prediction of workload with the software size-workload conversion model based on

ESN are as follows:
Step 1: Parameters such as reserve pool size N, reserve pool input unit scale IS and reserve pool

sparsity SD are selected. According to these parameters, connecting weight
matrixes inW , W and backW in ESN are generated randomly. As for the connecting weight matrix W
generated randomly, the spectral radius SR must be judged, namely whether maxλ is smaller than 1 is
judged. If 1maxλ > , the connecting weight matrix must be re-generated randomly.

Step 2: Project data with a certain quantity is taken as training samples. Abnormal data in project
data is recognized and processed.

Step 3: Arranged project data is input into the model. Echo response signals of the reserve pool are
excited. According to the connecting weight matrix W between nerve cells inside the reserve pool as
well as the target signal y, the connecting weight matrix outW can be solved.

Step 4: A part of project data other than the training sample is taken as the testing sample and used
to verify accuracy of model estimation.

Step 5: Size, organizational productivity and functional complexity of the software project to be
estimated are input. The estimated workload can be obtained by the trained network model.

According to the collected original data of 120 projects, the improved use case point method is
used to measure size of each software size. TRUE S software is used to obtain organizational
productivity and functional complexity of each software project. 110 projects are drawn randomly
and taken as the training samples, the rest 10 projects are taken as testing samples. The original data is
secret-related, so the original data is adjusted before simulation with the original data. However,
research of the method and reliability of the results are not influenced.

Dimension of the input layer is defined to be 3K = . The quantity of nerve cells in the reserve pool
is 200N = . Sparsity of connection of nerve cells inside the reserve pool is 3SD %= . The input unit
scale of reserve pool is 0 8IS .= . The dimension of input layer is 1L = . The connecting weight
matrixes inW , W and backW are initialized randomly. The spectral radius W of satisfies 1maxλ < .

110 training samples are input in succession. According to state variables of reserve pool nerve
cells in the updated model, during study and training, the inW , W and backW are kept unchanged, and
the connecting weight matrixes are output and computed after training.

In this way, 10 testing samples can be input into the model, and accuracy of the model and validity
of the method can be detected. Workloads of 10 testing samples are estimated by different methods
(for easy comparison, workloads computed with the ESN have been rounded). Results are shown in
the following table.

It is shown in Table 4 that estimation results obtained by the ESN-based improved use case point
method are obvious smaller than estimation errors of the traditional use case point method, indicating
that the software size-workload conversion model based on ESN has very high accuracy. These
results also verify high effectiveness and accuracy of the improved use case point method.

Advances in Engineering Research, volume 166

15

Table 3 Estimation Results and Accuracy of Different Methods

Sample
Project

Actual Workload
(Man-hour)

Traditional Use Case Point Method Improved Use Case Point Method
Based on ESN

Size
(Use Case

Point)

Workload
(Man-hour) Error

Size
(Use
Case

Point)

Workload
(Man-hour) Error

1 6852 268 5360 0.2177 154 6125 0.1061
2 7328 295 5900 0.1949 197 6674 0.0892
3 7649 422 8440 0.1034 318 7931 0.0369
4 8391 351 7020 0.1634 245 7662 0.08688
5 8964 362 7240 0.1923 255 8257 0.0789
6 9514 368 7360 0.2264 260 8596 0.0965
7 10622 694 13880 0.3067 586 11955 0.1255
8 12658 502 10040 0.2068 405 11758 0.0711
9 13294 836 16720 0.2577 718 14358 0.0800

10 13681 874 17480 0.2777 754 15024 0.0982

Summary
Based on introduction to typical software size measurement methods, the paper analyzes advantages
and disadvantages of different methods and mainly describes superiority of the use case point method.
Aiming at defects of the traditional use case point method, the paper improves the traditional use case
point method with new ideas. The improved use case point method is changed a lot in comparison
with the traditional method, so it cannot be directly compared with the traditional use case point
method. The ESN-based software size-workload conversion model was established to verify
effectiveness of the conversion model and accuracy of the improved use case point method.
Determination of the software size with the improved use case point method lays a solid foundation
for later establishment of an estimation model for software expense parameters of aviation
equipment.

References
[1] Chen Weilin, Zhang Zhengmin, Geng Huixin, Wang Xiaohan. Optimized simulation for control
of military product acceptance cost [J]. Computer Simulation, 2015,(9):34-38

[2] Liu Li, Zhu Xiaodong, Ye Fei, Wang Yigang. Prediction of structural level maintenance time of
software system [J]. Computer Simulation, 2013,(11):238-241

[3] Fu Yafang, Liu Xiaodong, Li Yanjie. Software size estimation method based on improved FPA [J].
Computer Engineering and Application, 2011, 47(1):22-25

[4] Li Mingshu, He Mei, Yang Da et al. Method and application of software cost estimation [J].
Journal of Software, 2007, 18(4): 775-795

[5] Zhu Anjiang, Research and application of software size estimation methods at earlier stage [D]
National University of Defense Technology, Changsha, 2011

[6] Tu Jishan. Research and Practice of Function Point Analysis Method in Software Size Estimation
[D] East China Normal University, Shanghai, 2006

[7] Jones C. Applied Software Measurement—Assuring Productivity and Quality. New York:
McGraw-Hill Inc., 1991

[8] Vogelezang F. COSMIC full function points the nest generation of functional sizing. In: Software
Measurement European Forum—SMEF 2005. 2005

[9] Xie Chenggang, Cao Wenzhao. Hybrid assessment method for cost risks of software projects [J].
Computer Simulation, 2009,(4):304-307

Advances in Engineering Research, volume 166

16

[10] Contact way: Zhou Yang, Wu Haitao, Zhang Dongwei. Extended use case point estimation
method [J]. Computer Technology and Development, 2006, 16 (12): 64-66

[11] Ribu K. Estimating Object-Oriented Software Projects with Use Cases[D]. Norway: University
of Oslo, 2001

[12] Guo Heqing. Modern Software Engineering [M]. Guangzhou: Press of South China University
of Technology, 2004

Advances in Engineering Research, volume 166

17

