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Abstract. Based on the embedded computing platform, we propose a visual inertial fusion SLAM system. The software 
algorithm combines the matching of monocular visual feature recognition and IMU measurement pre-integration 
algorithms. And the back-end uses tightly-integrated nonlinear optimization algorithms to process data. The hardware 
uses NVIDIA's Jetson TX1 parallel processing computing platform and low-cost sensors to retrieve data. The robot uses 
the open source robot operating system ROS as the operating system and the upper computer uses the UBUNUT system. 
Based on the embedded parallel processing, visual inertial SLAM system has the characteristics of low cost and good 
stability. 
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INTRODUCTION 

With the advancement of SLAM technology and the maturity of the positioning and map reconstruction theory, 
vision-based SLAM technology has developed rapidly. There are many mature SLAM solutions at home and abroad. 
Each of these solutions has its own applicable scenarios and application conditions. Visual SLAM solutions often do 
not have a certain degree of versatility. Therefore, depending on the specific application scenario and the 
requirements of low-cost, high-precision, dense construction, selecting the appropriate visual algorithm 
implementation and hardware conditions is the key to solving the SLAM problem. 

At the beginning, Mono-SLAM is the first real-time monocular SLAM solution using the EKF optimization 
framework. Afterwards, the EKF framework became a common solution to the SLAM solution. Until the advent of 
PTAM, the nonlinear optimization framework was used for the solution of SLAM problem. The later appeared 
LSD-SLAM is a typical representative of monocular visual direct application. ORB-SLAM has a wide range of 
application scenarios. It uses an optimized framework for graph optimization and is applicable to visual sensors such 
as monocular, binocular, and RGB-D. It is currently a mature visual SLAM solution. As the vision scheme continues 
to mature, more visual SLAM solutions will be proposed. This is due to the fact that visual SLAM technology can 
reduce the cost of using laser radar, and has the advantages of rich feature information and wide application 
scenarios. However, the visual SLAM, especially the low-cost monocular vision, has the disadvantages of easily 
losing the tracking target and high computational performance requirements. At the same time, the optimization 
framework has been developing. Currently, nonlinear or graph optimization schemes rely heavily on computational 
capabilities. This has become a major obstacle to the in-depth development of SLAM technology. 

In general, the future development trend of visual SLAM has two major categories: First, it is developing in the 
direction of low cost, lightweight, and miniaturization, allowing SLAM to operate well on small devices such as 
embedded devices or mobile phones, and occupying resources as little as possible. For example, to implement the 
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functions of robots, AR/VR devices. On the other hand, high-performance computing equipment is used to achieve 
precise 3D reconstruction and scene perception. In these applications, the goal is to accurately reconstruct the scene 
without limiting the portability of computing resources and devices. Therefore, GPUs can be used, and there is also 
a combination of this direction and deep learning. The combination of vision-based SLAM and embedded mobile 
computing devices to achieve real-time online positioning and mapping and semantic SLAM annotation is the 
current hot research direction.  

VISUAL INERTIAL SLAM ALGORITHM 

Tightly-Integrated Nonlinear Optimization 

The sensor module mainly includes a monocular camera and an IMU. The monocular camera relies on the 
OPENCV library to read each frame of the image and publish it as a topic in the ROS. The IMU data is also 
published as a topic. The monocular camera uses a low-cost USB camera and the camera model is a common 
pinhole camera model, as shown in Figure 1.  

 
Figure 1 Pinhole camera model 

This equation is called Epipolar Constraint. The geometric meaning of the polar constraint is that the mixed 
product of x1, t, and Rx0 is 0 indicating that the three vectors are coplanar. That is to say the three sides of the 
triangle in the above figure are coplanar. E is called the essential matrix, which is determined by the outer 
parameters R and t. The two-dimensional information from two frames can be obtained as an essential matrix and 
then decomposed into R and t. This is the new form of Epipolar Constraint. 

1 0 0x Tt Rx× =                                                                                  (1) 
The following formulas complete the conversion of the world coordinate system (in millimeters) to the pixel 

coordinate system (in pixels), the world coordinate system to the camera coordinate system, the camera coordinate 
system to the image coordinate system, and the image coordinate system to the pixel coordinate system.  
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The inertial attitude sensor integrates three-axis gyroscopes, three-axis accelerometers, three-axis geomagnetic 
sensors and data processing chips. The data processing chip embeds data fusion algorithms, including static error 
calibration, dynamic error estimation, and data fusion. The attitude and heading information of the measured object 
can be output in real time, and it is packaged in a PLCC (stamp hole) for easy testing and system integration. It is 
suitable for VR, handheld devices, wearable devices, motion capture, and indoor robot navigation. 

The IMU output frequency is high (100-1KHz), so the optimization variable will grow rapidly, making real-time 
optimization difficult. Christian Forster proposed using a method of pre-integrating IMU sampling data between two 
frames of images into a constraint which reduces the optimization variables. For standard IMU integration between 
two frames of images, the initial state is given by the state estimate of the first frame. However, in each iteration of 
the optimization, the state estimation is changing, then the IMU pre-integration needs to be repeated. This problem 
can be solved by the constraint of relative motion and re-parameterization. Then the re-parameterization is called 
IMU pre-integration. IMUs generally have white noise and zero bias. However, the visual image is not biased when 
it is stationary, so the visual image is used to determine the zero bias, and the IMU is used to determine the 
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rotational motion and rapid movement. By re-parameterization, the IMU measurements between key frames are 
integrated into relative motion constraints, avoiding duplicate integration due to initial condition changes, and 
integrating the IMU data before the next key frame arrives.  

 
Figure 2 Camera and IMU different frame rates 

The IMU's variable formula can be expressed as 
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The measured angular velocity and acceleration are the sum of the actual angular velocity, acceleration, 
deviation and noise. The deviations of the IMU are random walks, and the noise is Gaussian. The IMU's kinematic 
formula is expressed in differential form.In the end, IMU's motion expression can be obtained, namely the 
difference equation: 
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Therefore, the measurement model between two key frames is: 

( )( )
1

1

1 2

1
2

= Exp

( ) ( )

1
2

1      ( )
2

j
T g gd

ij i j k k k
k i

j
T a ad

ij i j i ij ik k k k
k i

jT
ij i j i i ij k i

j
a ad

ik ik k k k
k i

R R R b t

v R v v g t R a b t

p R p p v t g t

v t R a b t

ω η

η

η

−

=

−

=

−

=

−

=






∆ = − − ∆


∆ = − − ∆ = ∆ − − ∆

  ∆ = − − ∆ − ∆  

 
  = ∆ ∆ + ∆ − − ∆   

∏

∑

∑

∑













                                             (5) 

Pose estimation is the key to robot navigation and positioning. Both 3D reconstruction and trajectory planning 
require highly accurate state metrics (position, velocity, direction, etc.). In this section, we present a visual inertial 
pose estimation based on monocular visual tight integration of sliding windows to provide accurate state estimation 
for the entire system. Since monocular visual INS fusion is a highly nonlinear process, good pose initialization is 
required before pose estimation. According to the principle of epipolar geometry and the IMU's pre-integration 
algorithm, the rotation and translation between two key frames can be accurately calculated and pose estimation can 
be performed. We will introduce data preprocessing, stable pose initialization and tight fusion optimization 
framework. 

VINS can be divided into two categories according to optimization methods: one is a filtering-based 
optimization algorithm, and the other is a convex optimization-based optimization algorithm. Filter-based 
optimization algorithms are generally considered to be more efficient and faster to compute. The disadvantage of 
this algorithm is that it may lead to sub-optimal results in order to repair system nonlinearities. The optimization 
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method based on convex optimization can obtain better calculation results by reconstructing the past state of the 
linearization system. The cost is to spend more computing resources. 

The IMU and camera data are collected at certain time intervals for pose estimation. Due to its multi-view 
constraints guarantee more accurate accuracy. As shown in Figure 5, the fixed window contains data for several 
different frames of the IMU and camera. In the slip window we define the following vector: 
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Where denotes the state of the k-th keyframe, including the accelerometer and gyroscope deviations in the world 
coordinate system's position, velocity, angle, and principal coordinate system. We use the IMU data as the main 
coordinate system, the world coordinate system is associated with the gravity-related real world, and the gravity 
vector is set after processing in the initialization process. Throughout the estimation framework, we use quaternions 
to indicate optional equipment. Indicates external parameters, including rotation and translation between camera and 
IMU positions. Is the number of key frames in the sliding window. Refers to the inverse depth of the first feature in 
the observation volume. 

There are two types of metrics in our state estimation framework: one is an image and the other is IMU data. 
Both measurements were pre-processed prior to optimization. The image was tracked and characterized, and the 
IMU performed pre-integral processing. Deviations were taken into account in the IMU pre-integration process and 
later in the optimization process. For each frame of image, there is a KLT sparse optical flow algorithm (Lucas and 
Lucas) tracking, and corner features are detected simultaneously to maintain the minimum number of feature points 
(100-300) in each frame of the image. The detector enforces uniform feature distribution by setting a minimum 
interval of 20-30 pixels between two adjacent features. In the basic matrix verification, the RANSAC step simply 
performs outlier exclusion. At the same time select key frames at this step. There are two criteria for keyframe 
selection, one of which is the average disparity. If the average disparity of the tracked feature exceeds a certain 
threshold, we treat the image as a keyframe. Both translation and rotation cause parallax, but purely rotated features 
cannot be triangulated. To avoid this, we use IMU data results to compensate for rotation when calculating disparity. 
Another standard is tracking quality. If the number of tracking features is below a certain threshold, we also treat 
new frames as key frames. We define the IMU measurement data (angular velocity and acceleration) as and the 
measurement result is related to deviation and noise. 

After initialization, we continue to use the slip window nonlinear estimation for high-precision fusion 
optimization, taking into account the IMU bias. The largest posterior estimate has been obtained by minimizing the 
sum of the covariance norm of all measured-quantity residuals: 
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lc zγ c are the residuals measured by the IMU and camera, respectively. b  is the measurement of 

IMU and C  is the measurement of feature detection. The nonlinear system is linearized by the least deviation and 
solved by the Newton Gauss method. The measurement model of the IMU and the measurement model of the 
camera have been previously described in detail. 

The IMU measurement frequency is much higher than the visual measurement. The frequency of our nonlinear 
optimization estimation is limited by the visual measurement. In order to facilitate the performance of real-time 
control, the estimated output is directly fused with the latest IMU measurements, which are used as high-frequency 
feedback in the control loop. 

GPU Parallel Processing Map Reconstruction 

The selection of key frames for dense construction is more stringent than the key frame selection in pose 
estimation. We use two thresholds to control the selection of key frames: The first one is used to exclude frames that 
do not contain enough depth information. If the calculated distance is less than the threshold, we only save it. The 
second threshold is the key frame selection parameterized to accommodate the most recent sample layer setting. 
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From experience, this threshold setting is guaranteed to be large enough to ensure that there is enough depth 
information for feature recovery and not too large to avoid the depth of the most recent sampling layer being 
invisible. 

For each key frame, multiple test frames are required for deep updates. There is only one key frame at any time, 
and the key frame is switched by a distance metric. Only when a frame changes relative to the current key frame by 
more than one distance threshold, the frame is regarded as a new key frame. We sample the depth of each pixel in 
the key frame to obtain multiple virtual planes with different depth values. These planes are all perpendicular to the 
z axis in the primary coordinate system. Each pixel in the key frame is projected onto a virtual plane and back 
projected into the test frame. By calculating the depth difference, a similar cost is obtained for each possible depth of 
each pixel. Collect all the costs and focus on a 3D cost block. 

When there are multiple test frame images, a cost block is obtained for each image. These cost blocks are all 
based on the same reference picture and can be aggregated into a single cost block to reduce their sensitivity to noise. 
This process can be accelerated with GPU parallel implementations. Intuitively, for each pixel, its true depth is the 
depth corresponding to the smallest similar cost in the centralized cost block. After that, the semi-global smoothing 
optimization is applied to remove the outliers and the weakly-textured region is interpolated again. The final step of 
the deep optimization uses a parabolic fit. 

EXPERIMENTAL VERIFICATION RESULTS 

The aircraft continues to move around the square. The visual interface shows that the robot's motion track is 
square and accurate. This is due to the effect of the loop detection in the algorithm. The number of adjacent frame 
feature matching feature points can be seen to be not very large. It can be understood that the number of corner 
detections is affected by the image quality, but it is also sufficient to use the PNP algorithm to obtain the pose after 
matching. 

      
Figure 3 Value estimation and feature matching 

This is a rendering of a GPU-accelerated monocular dense map reconstruction. Real scenes and color visual 
maps and grid maps based on the PCL point cloud library all have some correspondence. The effect is good. 

 
Figure 4 Dense map reconstruction 

CONCLUSION 

The pose and pose estimation algorithms for fusion vision and IMU data include vision, IMU data pre-
processing, initialization, tight coupling optimization, loopback detection, etc. The robot's motion trajectory is 
displayed in real time. Under the assurance of accuracy of pose estimation. Through pixel-level triangulation, outlier 
removal, and deep fusion per frame, the PCL library is used to acquire dense 3D maps. Using GPU acceleration for 
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the reconstruction of the map, powerful computing capabilities ensure data processing accuracy and real-time 
performance. 
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