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Abstract—The prediction for the frame of a video is difficult but in urgent need in auto-driving. Conventional methods can only 
predict some abstract trends of the region of interest. The boom of deep learning makes the prediction for frames possible. In this 
paper, we propose a novel recurrent convolutional encoder and deconvolutional decoder structure to predict frames. We introduce 
the residual learning in the convolution encoder structure to solve the gradient issues. The residual learning can transform the 
gradient backpropagation to an identity mapping. It can reserve the whole gradient information and overcome the gradient issues 
in Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN). Besides, compared with the branches in CNNs 
and the gated structures in RNNs, the residual learning can save the training time significantly. In the experiments, we use UCF101 
dataset to train our networks, the predictions are compared with some state-of-the-art methods. The results show that our 
networks can predict frames fast and efficiently. Furthermore, our networks are used for the driving video to verify the 
practicability. 
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I.  INTRODUCTION  
Representation learning is one of the potential direction of video process with the development of hierarchical networks. 

The deep networks are now not limited for classification and recognition. Researchers have succeeded to predict the sequences. 
In this paper, we address the issue of predicting the 2D sequence signals, i.e. frame prediction, which is used for predicting the 
scene for an auto-driving vehicle. Compared with sequence predictions, videos have sequential features on no matter timeline 
and space. These features provides sufficient information for frame prediction. However, more requirements are raised by 
frame prediction. Other than image reconstruction, frame prediction outputs the next frame, and the predicted frame requires 
high resolution and clear edges. Therefore, the issue of frame prediction is to output the sharp future frame. 

The researchers have focused on frame prediction for long. Van Hateran and Ruderman [5] apply ICA (Independent 
Component Analysis) method to small video cubes of patches, and so do Hurri and Hyvarinen [6]. Wiskott and Sejnowski [7] 
develop a method based on the slowness features through time. Bilinear models based on the transformations between nearby 
frames are widely investigated, the related researches are proposed in the works of Memisevic and Hinton [8], as well as Miao 
and Rao [9]. Currently, the hierarchical networks plays an import role on frame prediction. Ranzato et al. [3] define a recurrent 
convolutional network structure based on the language modeling, and predict frames in a discrete space of patch clusters. 
Srivastava et al. [10] adapt the LSTM model [11]for 2D sequence to predict frames. Oh et al. [12] define an action conditional 
auto-encoder model to predict next frames in the Atari-like games. Mathieu et al. introduce GAN [4] to predict the frames and 
reformulate the loss function with the combination of the MSE (mean square error) and the gradients. 

To predict a sharp frame and overcome the drawbacks, we propose a frame prediction method using recurrent 
convolutional networks with residual learning. It is well known that the gradient vanishing and explosion exist in the 
backpropagation of deep convolutional networks and long-term recurrent networks, which lead in non-convergence. To solve 
this issue, the gate functions are exploited in the recurrent networks, and ReLU function and assistant loss functions are 
exploited in the deep convolutional networks. Both of them avoid gradient issues with the cost of computation complexity. To 
train the networks efficiently, we introduce residual learning in the networks. The learned representation from the previous 
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frames are restored to a frame by deconvolution networks. The major contributions of this paper are summarized as follows: (1) 
we propose a novel structure to solve the gradient issues of recurrent convolutional networks; (2) we construct a recurrent 
encoder and a decoder to predict frames; (3) we prove the residual learning solve the gradient issues theoretically. 

II. RECURRENT CONVOLUTIONAL ENCODER WITH RESIDUAL LEARNING  

A. Gradient Issues of Deep Recurrent Convolutional Networks 
It is well known that the training of RNNs [13] and CNNs [14] is difficult when the networks are very deep . The approach 

of updating gradients for RNNs and CNNs is backpropagation and backpropagation through time (BPTT), respectively. The 
recurrent model can be unfolded as a multi-layer one with connections in the same layer, and backpropagation through time is 
similar to the backpropagations in other hierarchical networks, such as Deep Brief Networks (DBN), Auto-Encoder (AE) and 
CNNs. We take a generic RNN for example to demonstrate the gradient issues as follows. A generic RNN, with an input 

 and the state  is given by 

 , (1) 

where  is the collection of the input weight matrix , recurrent weight matrix  and the bias . In details, the state at the 
timestamp  is described as  

 , (2) 

where  is the sigmoid function. Denoting the cost function as , the BPTT is formulated as  

 , (3) 

 , (4) 

 , (5) 

where  is the time distributed length. As Bengio et al. [15-18] discussed and (5) shows, the gradient issues are relative to the 
continuous multiplications. Because of long-term states, the gradient exploding happens when the gradient grows 
exponentially, while the gradient vanishing happens when the gradient go exponentially fast to norm 0. The gradient issues of 
CNNs are similar to RNNs. The gradient issues lead to no convergence. 

B. Residual Recurrent Convolutional Encoder 
To solve the gradient issues, we propose a recurrent 

convolutional encoder with residual learning. The recurrent 
convolutional encoder is composed of two parts, recurrent 
blocks and convolutional blocks.  

Recurrent blocks: As  is an underlying 
mapping from state to state, we learn this mapping with a 
residual, given by 

 . (6) 

H H

 

weighted layer

weighted layer

+

ReLU

 
(a) (b) 

Figure 1.  Residual recurrent structure (a) and residual convolutional 
structure (b) of Residual Recurrent Convolutional Encoder 
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Thus, the state is calculated as  

 . (7) 

Equation (7) is composed of a shortcut connection and an element-wise addition. The shortcut connection does not introduce 
extra parameters and computation complexity. This reconstruction makes the loss function approximate to an identity mapping. 
When the recurrent connections are formulated as identity mapping, the training error should be non-increasing. To drive (7) to 
approach an identity mapping, the weights of nonlinear block in (7) are tuned towards zero. Considering the dimension 
equation, a linear projection is introduced to match the dimensions. Thus, the forward propagation of recurrent networks is 
shown as 

 , (8) 

where  is the residual function,  is the linear projection weight and an identity mapping.  
The state is the addition of an identity mapping and a residual function. The activation function is also an identity mapping. 

For the reason of recurrent transmission and the residual learning as (8), the state  can be unrolled as  

 , (9) 

where  is the length of sequential dependencies. The accumulation equation (9) shows that any state  can be represented as 
a former state and a sum of residuals. When the initial state  is 0, the state  of timestamp  is the sum of series of residuals. 
Equation (9) results in a better backward propagation. Considering the loss function represented in (3-5), with the residual 
accumulation in (9), the gradient in BPTT is  

 . (10) 
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Figure 2.  The model with residual recurrent convolutional encoder composed of residual recurrent structure and residual convolutional structure, U-net 
connections and residual deconvolutional blocks for image restoration from representations. 
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Equation (10) describes that the gradient  can be decomposed into two additive parts. One is , which propagates 

information directly without weights, another is the accumulation, , which needs the inner 

product with weight matrices. The direct propagation part ensures the gradient information can be propagated to any state. The 
direct gradient part comes from the two identity mappings. It suggests the information can be entirely propagated both forward 

and backward, even when the weights are arbitrarily small. Because the accumulation part, , 

can not always be -1, the gradient of a state does not vanish through BPTT in a mini-batch. 
Convolutional Blocks: Convolutional blocks are described in [14] and the theatrical analysis are shown in [19].  The 

structures of recurrent blocks and convolutional blocks are shown in Fig. 1. 

C. Model and Training 
Based on the residual recurrent convolutional encoder discussed above, we build the model for frame prediction. To 

improve the scale-invariance of our model, we introduce the inception structure [20]. After learning the representation from 

the frame sequence, the deconvolution block is designed to restore a frame from representations, and a structure of u-net [21] 
improve the performance.  The details and structure of the model are shown in Fig. 2. 

In the training of the model, we use patches to accelerate the training and predict the frame with a complete frame 
sequence. The loss function is the weighted sum of mean square error (MSE) and gradient distribution. 
 

III. EXPERIMENTS 
The experiment runs on the Linux with a GPU of GTX970. The models are trained with the UCF101 dataset [2]. We 

predict the frame with three previous frames, and compare them with the state-of-the-art methods (Ranzato’s method [3] and 
Mathieu’s method [4]). The results are shown in Fig. 3. The comparative quantification is shown in Table 1. The results 
shows that our results are better than other methods. The scene prediction for auto-driving with the dataset from comma.ai [1] 
is shown in Fig. 4. 
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Figure 3.  Comparison with on the Basketball Dunk and Ice Dancing clips from UCF101 [2] appearing in Ranzato’s method [3] and Mathieu’s 
method [4]. We display frame predictions for each method along with two zooms of each image. 
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Figure 4.  Scene prediction for auto-driving with the dataset from comma.ai [1].  
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