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Abstract. Predicting the status of flight vehicle in advance can have huge advantages in maintenance and early warning 
areas. Accurate forecast helps reduce maintenance costs and improve safety during the aircraft's life cycle. Combining the 
ability of convolutional neural network to extract features of different levels and its computational efficiency, a novel 
convolutional neural network -- fault prognosis convolutional neural network(FP-CNN) is proposed in this paper, the 
purpose of which is to predict the Remaining Useful Life (RUL) by learning sequential information and extracting sensor 
features from noisy datasets under different operating modes. An experiment on CMPASS data is conducted to prove the 
efficiency and accuracy of this framework. 

INTRODUCTION 

With the development of flight vehicle, an increasing number of on-board sensors are planted in the vehicle. 
Accessing and storing sensor data becomes handier due to sensor techniques. The large amount of sensor data 
containing information about the status of working vehicles has made data-driven condition monitoring system more 
popular than before. Traditionally, people used physical models like wavelet transform, empirical mode 
decomposition and short-time Fourier transform. But in current practice, those methods struggle in dealing with 
mass data [1, 2]. As artificial intelligence as an approach has achieved great success in many fields, machine 
learning algorithms started to be applied in fault diagnosis and have had promising results [3]. 

It is a great challenge to diagnose failure using sensor data. First, one flight vehicle could have thousands of 
sensors with all sensor data sampled and stored at a particular rate during the operation of the equipment. Although 
those data contain information about system conditions, their dimension is high and health information is not easy to 
extract. Second, not all sensor data is contributed to the system’s health condition. In fact, only a few sensors play a 
key role in system failure [4]. All the other data of the device can be considered as noise. Third, raw sensor values 
cannot be directly compared with each other because the vehicle system has many operation phases. One value may 
indicate different system statuses in different operation models [5]. 

Expert knowledge used to be the major basis of the pre-determination of useful and robust sensor values. For 
example, Nawaz et al [6] applied Bayesian-network-based inference system in the etching manufacturing process, 
which was based on the expert knowledge about the relationship between root causes, equipment and process 
parameters. Mahadevan et al [7] employed one-class SVM to detect odd behaviors during semiconductor etching 
process. You et al [8] applied principal component analysis (PCA) to extract features from acquired signals before 
using them as inputs for feedforward neural network. This model succeeded in detecting defects. Liu et al [9] 
proposed a time-frequency dictionary which could produce different identities for different raw vibration dat. Those 
mapped vectors were then used as SVM inputs for the diagnosis of bearing faults. Kang et al [10] employed relative 
energy in a wavelet packet node (REWPN) and entropy in wavelet packet node (EWPN) as support vector machines 
(SVMs) for diagnosis and fault classification. 

Though traditional machine learning algorithms could deal with mass data and reduce the negative effects of 
noise and high dimensions, they needed professional knowledge about specific fields and could not extract complex 
non-linear feature information from massive data. Deep learning, however, is able to fill those gaps, thus making a 
big splash in recent years. Compared with traditional machine learning algorithms, deep-learning-based networks 
have more layers to extract features automatically. After the extraction by several layers, the raw input values are 
turned into more abstract features without any irrelative information. Deep learning has proved to be a huge success 
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in Computer Vision [11] and speech recognition [12]. Wang et al [3] adopted deep belief network (DBN) on health 
state classification, which is more accurate than SVM or SOM. Li and Zhang [13] et al proposed a novel fully-
connected winner-take-all autoencoder network to detect bearing faults. They imposed lifetime sparsity on the 
encoded features by keeping a maximum of k% neurons activated by each layer. This method turns out to be more 
accurate than the conventional deep neural network (DNN). Ince et al [14] proposed 1-D convolutional neural 
network to detect motor faults. Zhang et al [15] employed training interference-convolutional neural network which 
could reduce the noise of raw data and detect bearing faults under different operation models. Pan et al [5] used a 
novel deep learning network (LiftingNet) to learn features adaptively from raw mechanical data without prior 
knowledge. Results showed that this method could achieve layer-wise feature learning and classify mechanical data 
with random noise. Lee et al [16] proposed a convolutional fault detection and classification neural network (FDC-
CNN), in which a receptive field was tailored to multivariate sensor signals slides along the time axis to extract fault 
features. 

Despite great improvement in fault diagnosis, those methods detect faults only when they have occurred. For 
higher efficiency on aircraft maintenance, more advanced techniques are needed to predict when faults will take 
place. Fault prognostics is a more promising research area, enabling people to make decisions before failure occurs 
by predicting the health condition of the system. But due to the complexity of system failure degradation, there are 
few researches on fault prognostics. 

This paper proposes a convolutional neural network called FP-CNN to estimate system’s remaining useful life. 
Section 2 introduces the background information about convolutional network. Section 3 presents the main idea of 
the proposed framework. And Section 4 first introduces the experiment data, then fixes the network with detail 
parameters and functions. The results and analyses are presented in the last part of Section 4.   

BACKGROUND 

Standard convolutional neural network 

Convolution neural network (CNN) has become the most popular algorithm in deep learning field due to its 
powerful learning ability in image classification, text recognition and so on. It is a neural network designed to 
handle data with a grid type of structure. Timing data, for example, can be considered as a one-dimensional grid on 
the time axis formed by samples. Image data is typical two-dimensional grid data. Convolution is a special type of 
linear operation. Convolutional networks are neural networks that use convolution instead of normal matrix 
multiplication at least in one layer of the network.  

As shown in Fig. 1, a standard convolution neural network consists of five parts: input layer, convolutional layer, 
subsample layer, fully-connected layer and output layer. Convolutional layer is the core of the whole network where 
several filters are applied to the input data. An input value is used for many different types of feature extraction. The 
number of filters in the layer is equal to the amount of features extracted from the input data. Another important part 
is the subsample layer (pooling layer). This layer is responsible for reducing the size of the data. The last pooling 
layer or convolutional layer is usually connected to one or more fully connected layers, the output of which is the 
final output of the model. 

   
FIGURE 1. A standard convolutional neural network 
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Convolutional layer 

The input layer receives data or mostly images, then the operation involving the kernel function and the input 
data is carried out to extract local features and store those features as a feature map. As shown in Fig. 2, a kernel 
function is a matrix (normally square) of weights with a much smaller size than the input data. The feature map has 
many nodes, each representing a certain input data area operating on the kernel function. The kernel functions 
operate across the entire input data with specific steps in both horizontal and vertical directions. The following 
formula (1) is a two-dimension convolutional operation: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝜎𝜎 �� � 𝑤𝑤𝑚𝑚𝑚𝑚𝑥𝑥(𝑟𝑟+𝑖𝑖⋅𝑠𝑠)(𝑐𝑐+𝑖𝑖⋅𝑠𝑠)
𝐿𝐿𝑛𝑛
𝑚𝑚=1

𝐿𝐿𝑚𝑚

𝑚𝑚=1
+ 𝑏𝑏�                                               (1) 

0 ≤ 𝑖𝑖 ≤
𝐻𝐻 − 𝐿𝐿𝑚𝑚

𝑆𝑆
+ 1, 0 ≤ 𝑗𝑗 ≤

𝑊𝑊 − 𝐿𝐿𝑚𝑚
𝑆𝑆

+ 1 
yij is the value of the kernel function operating on a particular area. σ is an activation function. Lm and Ln are the 

height and width of the kernel matrix respectively. wmn and x(r+i⋅s)(c+j⋅s)  represent the coordinates of the kernel matrix 
and the input data respectively. b is the bias of the equation. H and W are the height and width of the input data 
respectively. S denotes the length of the kernel step; and i and j stand for the feature map’s height and width 
respectively. The size of the output feature map is ((H-Lm)/S +1) * ((W-Ln)/S+1). 

 

 
FIGURE 2. An example of two-dimensional convolution. Boxes with arrows are used to illustrate how the upper-left 

corner of the output tensor is convolved by applying the kernel to the upper-left corner of the input tensor 
Convolution operation helps improve machine learning through three main concepts: sparse interaction, 

parameter sharing and equivariant representation [17]. In traditional neural networks, each input neural node 
interacts with every output neural node. The size of the parameter matrix grows with the amount of these nodes, 
requiring more sophisticated calculation. The sparse interaction of the convolutional network can make the kernel 
matrix much smaller than the input size. For example, the input image could have millions of pixels, but we can use 
a kernel of only a few hundred pixels to extract meaningful features. This means we only need fewer parameters and 
less computation. 

Parameter sharing means that we use the same parameters of several functions in one model. In conventional 
neural networks, the parameters of the weight matrix will be used only once, while in convolution networks, the 
parameters of the kernel matrix will be used many times. The matrix will operate on every part of the input data. Fig. 
3 shows how parameter sharing reduces the computation of the network. 

 
FIGURE 3. Sparsely connected, the blue nodes show how input cells x1 and x2, receptive fields of y1 affect output cells 

y1, y is generated by the convolution with a kernel width of 2, and only two input cells affect each cell of output y. 
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Subsample 

Pooling layer usually comes after the activation function to adjust the latter’s output. The pooling function uses the 
local statistical characteristic of the neighboring data as the output of this location. In practice, people normally use 
max pooling, average pooling and so on. As illustrated in Fig. 4, max pooling takes the maximum value of the 
adjacent matrix area of a given size as the output of this area. 

5

3

41

5

MaxPooling

 
FIGURE 4. 2*2 Max Pooling layer 

Pooling is important for handling input data of different sizes. In general, the size of a model’s output layer stays 
unchanged. By adjusting the size of the pooling area, the last layer can get the same dimension of abstract features 
despite the size of the input. 

FP-CNN 

Artificial intelligence-based approaches can be roughly divided into supervised and unsupervised learning. The 
method this paper proposes is based on supervised learning. Supervised learning aims to find a mapping function of 
input values and labelled targets. The difference between desired target values and mapping function’s output is 
measured and given as feedback to modify the model. Eventually we will get an optimal solution. 

Timing data is arranged in a 1-dimensional grid along the time axes in most diagnostics and prediction cases. 
Full length kernels are used sometimes to extract features of the whole time sequence. Focusing only on the 
extraction of full-length abstract features of the whole sequence, this approach ignores low-level timing features of 
several adjacent sequences. In other cases, several layers of small length kernels of different sizes are applied. Those 
kernel functions can map characteristic information to adjacent time layer-by layer and extract both low-level and 
high-level features. However, this method requires a lot of extra computing resources. 

FP-CNN framework 

The structure of our CNN framework is called fault prognosis convolutional neural network(FP-CNN) which is 
different from that of the traditional CNN model used for diagnostic classification. As depicted in Fig. 5, this model 
contains an input layer, four convolutional layers and one fully-connected layer. In image classification, channels of 
input layer are fixed and divided by RGB. In our framework, the number of channels is subject to changes, 
depending on the dimension of input data. For example, if there are four sensors in one sampling period, the input 
layer will have four channels. Each channel is a two-dimensional grid. Every pixel of grid represents a value of 
sensor. {T1

k, T2
k, T3

k, …, Tlength
k} are placed in the first column and {T1+length*(length-1)

k, T2+length*(length-1)
k, …, 

Tlength*length
k} in the last column of kth channel. Be noticed that the data along the row direction is not sequential in 

time. 
The first layer of the convolution aims to extract incomplete feature information about sensor data in the same 

cycles. To this end, we employ a kernel of a special size, the length and width of which are both 1. This kernel 
extracts feature information on the same pixel in different channels, which means we generate basic traits from 
different sensors  from the same cycle. Unlike the traditional convolutional networks, the subsample layer is not 
added here  
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FIGURE 5. Structure of the proposed convolutional neural network 

because every pixel of channel grid represents the character of different sample cycles. If pooling layer is applied, 
we will lose the time accuracy of features. 

After convolutional layer, Rectified Linear Units (ReLU) are used as nonlinear activation function defined as 
formula 2: 

𝜎𝜎(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥(0, 𝑥𝑥)                                                                              (2) 
Research [18] showed that the deep CNN with ReLU trained faster than the same framework that used Tanh as 

their activation function. Also, when we trained our network with gradient descent, ReLU could alleviate the 
gradient vanishing problem [19]. 

Now the number of channels equals to the amount of previous convolutional layer’s kernel functions. In this 
convolutional layer we want to generate basic features of neighbor sequences. As mentioned above, the period is 
continuous in the vertical direction of the channel. In order to avoid the periodic discontinuity in the horizontal 
direction, we use N*1 filter to extract low-level feature information about N successive sampling cycles. 

The next layer is still a convolutional layer which will map abstract high-level timing traits. The size of the filter 
will be (L-N+1) * M. L denotes the length of the channel grid, and N represents the height of previous layer’s kernel 
function. M and N are hyper-parameters of this framework. Only in this way can the receptive area of the channel be 
a successive time cycle. Each pixel is coupled with space and time. 

The last convolutional layer aims to extract high-level features of input data. We adopted the normal filter of 2*2. 
We can learn high-level abstract features of time and space within a certain range. 

A fully connected layer comes after all the convolutional layers, the equation of the fully-connected layer is 
shown in formula 3:  

𝑂𝑂 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑐𝑐 + 𝑏𝑏)                                                                               (3) 
O represents the output, σ is the Sigmoid activation function, W denotes the parameter matrix of the linear layer, 

and xc is the output of convolutional layers. Then LogSoftMax is applied to predict the possibility of each bit. 
LogSoftMax is depicted in formula 4. At last, the LogSoftMax is used for the output of entire network. 

𝑃𝑃𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙 𝑒𝑒𝑂𝑂𝑖𝑖

� 𝑒𝑒𝑂𝑂𝑖𝑖
𝑁𝑁

𝑖𝑖

                                                                                 (4) 
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CASE STUDY 

In this section, the experiment which tests the proposed framework will be presented in three parts. First, the 
source and characteristics of the experimental data is described. Second, several parameter groups are applied to the 
framework. Finally, the result of the experiment is discussed. 

Input data 

The experimental data in this paper comes from the data set released by NASA AMES Laboratory. CMAPSS is 
a tool for simulating a realistic large commercial turbofan engine. This data set collects periodic sensor information 
that simulates turbofan engine operation until failure. Turbofan engine is the core component of the aircraft, and is 
the largest and the most complex subsystem on the aircraft. It is important to know the status of the subsystem in 
advance. 

The data set is composed of 216 units. They are different instances of the same system from different initial 
states until failure. The unit data is composed of periodic sampled sensor signals. Each cycle consists of unit name, 
period, 3 operation settings and 21 sensor values. Although it is not known what the physical attenuation model of 
the turbine engineer system is, it is considered that the degradation has common characteristics. The cycle of each 
unit is not fixed. The shortest unit has 127 cycles, the longest 356 cycles, and the average number of cycles is 209. 

The first step of the experiment is to normalize the data set to have zero mean and standard deviation to ensure 
sensor data of different ranges is put into the same scope. The equation is depicted in formula 5 

𝑥𝑥𝑚𝑚𝑛𝑛𝑟𝑟𝑚𝑚(𝑛𝑛) =
𝑥𝑥(𝑚𝑚)−1

𝑁𝑁∑ 𝑥𝑥(𝑖𝑖)𝑁𝑁
𝑖𝑖

�1
𝑁𝑁� �𝑥𝑥(𝑚𝑚)−1

𝑁𝑁∑ 𝑥𝑥(𝑖𝑖)𝑁𝑁
𝑖𝑖 �

2
𝑁𝑁

𝑛𝑛

                                                                (5) 

where x(n) is the sampled data of one sensor. Those normalized sensor data is the input of neural network we 
proposed in this paper. 

Network training  

Supervised deep learning method was applied to the established CNN model to predict the remaining useful life 
(RUL) of the system. The model was set to consist of four hidden convolutional layers with several feature maps. 
There would be fewer units as the model goes deeper due to parameter reduction. The main parameters of the CNN 
model we proposed are listed in Table 1. 

TABLE 1. model parameter size. 
Model 

parameters 
Input 
layer 

Convolutional 
layer 1 

Convolutional 
layer2 

Convolutional 
layer3 

Convolutional 
layer4 

Size of feature 
map 

10*10 1*1 2*1 8*2 2*2 

Our input grid consists of 10*10 two-dimensional grids. We set the first convolutional layer has 12, 32, 64, 128 
kernels with size of 1*1. The kernel of the second convolutional layer is set to have a size of 2*1, and the number of 
kernels is 12, 24, 32, 64 and 128 respectively. The third convolutional layer uses 8*2 kernel with the amount of 12, 
24, 32, 64 and 128. The last convolutional layer uses 2*2 kernel with the amount of 12, 24, 32, 64 and 128. The 
output of the fully connected layer is the material for prediction. 

We minimize the loss function between the output of the network and target, which is shown in formula 6 where 
the target is the real value of the labels. The value of the correct bit is 1 and the reset of bits is set to 0 

𝐿𝐿(𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑚𝑚𝑡𝑡𝑙𝑙𝑡𝑡𝑡𝑡) = −𝑥𝑥[𝑡𝑡𝑚𝑚𝑡𝑡𝑙𝑙𝑡𝑡𝑡𝑡]                                                                      (6) 
The framework is trained by root mean square prop (RMSprop). The process of this optimization function is 

depicted in formula (7) (8) (9) (10): 
𝑙𝑙 = 1

𝑚𝑚
𝛻𝛻𝜃𝜃 ∑ 𝐿𝐿(𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑚𝑚𝑡𝑡𝑙𝑙𝑡𝑡𝑡𝑡)𝑖𝑖                                                                   (7) 

𝑡𝑡 = 𝜌𝜌𝑡𝑡 + (1 − 𝜌𝜌)𝑙𝑙𝑔𝑔𝑙𝑙                                                                        (8) 
𝛥𝛥𝛥𝛥 = − 𝜖𝜖

𝛿𝛿+√𝑟𝑟
𝑔𝑔𝑙𝑙                                                                                  (9) 

𝛥𝛥 = 𝛥𝛥 + 𝛥𝛥𝛥𝛥                                                                                       (10) 
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There are several hyper-parameters and learnable parameters: global learning rate ε, initial parameters θ, 
numerical stability δ, and decay rate ρ. Compared with the traditional Adagrad optimization function, this method is 
a better solution to the problem of early stop of deep learning. 

All network matrix parameters are initialized layer by layer through a zero-mean standard uniform distribution 
called Xavier initialization. The formula is as follows formula 11: 

W~U[− √6
√𝑁𝑁𝑖𝑖𝑚𝑚+𝑁𝑁𝑛𝑛𝑁𝑁𝑁𝑁

 , √6
√𝑁𝑁𝑖𝑖𝑚𝑚+𝑁𝑁𝑛𝑛𝑁𝑁𝑁𝑁

]                                                            (11) 

Result 

Among all hyper-parameters to be determined in the training of convolutional neural network, the learning rate 
represents the rate of updating the parameter weights. In this experiment we used the values ranging between 10e-5 
and 10e-2. The exponent was increased by 0.5 each time. As shown in Fig. 4, L1, L2, L3, L4 are the key parameters 
of the model. Four sets of such values were set in Table 2. 

Table 2. Hyper-parameter sets 
 
 
 
 
 
 
Fig. 6 shows the testing result of different parameter sets in Table 2. This test unit contains the whole run to fail 

cycle data. 

 
FIGURE 6. picture A B(upper-right) C D for Parameter set 1, 2, 3, 4. 

As seen in picture A, at the beginning of the unit instance, there is a big gap between the predicted RUL and real 
RUL. This is because the predicted RUL 150 does not represent the precise cycle. It means the system does not 
show any sign of degradation by then. As shown in Table 2, in hyper-parameter set 1 we use 150 as the output 
length. And as we label the training and test data, if the unit has more than 150 cycles, we label those cycles which 
have more than 150 cycles to run until failure occurs. Moreover, we should pay more attention to the stages when 

0
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200

1 7 13192531374349556167737985
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L 

cycle 

predict RUl Real RUL

Experiment sets L1 L2 L3 L4 Output length 
1 24 10 10 10 150 
2 24 24 24 24 200 
3 48 48 48 48 250 
4 24 64 64 128 300 
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the fault has already affected the performance of the system, and less attention to the status of the early conditions of 
the system. 

We choose 30 units each of them has run hundreds cycles as test data, the average cycles of those 30 unit is 190. 
Each unit will fail after less than 50 cycles. The predict result is shown in Fig 7. Each blue column represents the 
predicting result of a test unit, and the corresponding yellow column is the real RUL of this unit. 

The average error between predict RUL and real RUL of this 30 units is 5.5 cycles. This result is better than the 
result of the first place in the Data Challenge Competition organized by the PHM conference. 

 
FIGURE 7. The test result of the 30 units 

CONCLUSION 

In this paper, a new convolutional neural network called FP-CNN is proposed for fault prediction in flight 
vehicle system. This method starts with raw sensor data; learns sensor dependent features and timing features 
through convolutional layers; and predicts the remaining useful life of aircraft components. We proved the accuracy 
of the proposed method by experiments. This method does not need pre-determined feature selection to eliminate the 
useless sensor values, and is more accurate than the other methods coping with the same issue.  

There is still a lot to be done to improve the current framework. We wish to apply deep convolutional neural 
network to big data on different system components under different fault degradation models in the future so as to 
train a system-level prognostic system.  
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