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Abstract. For non-linear and non-stationary signals, traditional signal processing methods cannot effectively capture 
their characteristics. For this purpose, time-frequency analysis algorithms are needed to analyze the frequency domain 
characteristics of the signal at different times. The traditional Empirical Mode Decomposition (EMD) algorithm is a non-
linear non-stationary algorithm. Its time-frequency resolution adaptively changes with the signal, so it can have higher 
resolution in various situations, and medical denoising and other fields have been widely used. However, when the 
signal-to-noise ratio is low, the performance of the EMD method is degraded due to noise. In this paper, an adaptive 
filtering method is proposed. By estimating the noise power under different conditions, the denoising process is 
adaptively performed, and a better filtering effect is achieved compared to the conventional method.  
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INTRODUCTION 

The signal contains a variety of information, including useful information we need and unwanted interference 
information. In order to suppress unwanted signals such as noise, various algorithms have been proposed for signal 
filtering. For a long time, for a stable linear time-invariant signal, people use the Fourier transform to link the signal 
between the time domain and the frequency domain and filter the signal in the frequency domain to achieve signal 
denoising and filtering. However, for non-stationary nonlinear signals, the Fourier transform cannot be effectively 
applied. In order to solve this problem, people put forward various time-frequency analysis algorithms and jointly 
described the distribution relationship between signal time domain and frequency domain. 

Various time-frequency analysis methods such as Gabor transform and wavelet transform have relatively fixed 
time-frequency resolution [1]. For complex and varied signals, these time-frequency algorithms often suffer from 
degraded performance, making it difficult to meet actual signal processing needs. To this end, Norden. E. Huang et 
al. proposed the EMD [2] algorithm (Empirical Mode Decomposition). The EMD algorithm does not require a 
reference signal but is based on the signal itself and has a high frequency domain resolution and adaptability [3][4]. 
However, when the signal-to-noise ratio is low, using the EMD algorithm to filter will cause some useful signals to 
be filtered out, and the denoising performance will be reduced [5]. 

PRINCIPLE AND METHOD 

The EMD Principle Analysis 

 For the EMD decomposition algorithm, the idea is to decompose the signal into several high-order and low-
order IMF (Intrinsic Mode Function) components according to the frequency. To meet the requirements of statistics 
and signal symmetry, this decomposition needs to satisfy the following two conditions: There is at most one 
difference between the local extreme points and the zero-crossing points, and the average value of the envelope 
formed by each extreme point is zero [6][7]. 
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Specifically, the obtained signal  s t  is subjected to EMD decomposition, and the following steps are performed: 

(1) Find all the maxima and minima in the signal  s t , Use cubic spline interpolation to obtain maximum 

envelope  max
e t  and minimum envelope  min

e t . 

(2) Find the mean envelope  mean
e t  from the maximum and minimum envelopes, and calculate the difference 

envelope  1d t  

      1 mean
= -d t s t e t   (1) 

(3) Repeat the resulting  1d t as  s t  for (1)(2) steps, after m  cycles,the difference envelope obtained for the 

thm  time is  1md t ,If they  1md t  obtained at this time meets the requirements of the IMF component,  1md t  is the 

first IMF component to be obtained as  1I t .  

(4) Subtracting the  s t  and IMF components and obtaining the residual signal component  1R t  

      1 1-R t s t I t   (2) 

(5)  1R t  still contains useful information components and is still not used, then repeat N  times for step of 

(1)~(4) ,until the standard deviation   of the selected two adjacent components meets the Koch Convergence 
Criterion,  0.2 0.3  ， [8][9],where the standard deviation is 
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Finally, N  IMF components can be obtained. The thN  IMF component is  NI t . 

The original signal can be reconstructed by using these IMF components [10]  Es t  
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    (4) 

EMD Adaptive Denoising 

By filtering the signal  s t by the traditional EMD method, a series of IMF components can be obtained, and the 

noise components contained in these IMF components are different. The component with a large noise content will 
affect the reconstruction of the signal. Therefore, by analyzing the energy of each IMF component, it is necessary to 
select a component with strong noise and perform multiple filtering on it to obtain better results. To measure the 
noise component of each order IMF component, the IMF components of each order can be taken separately and 
sequenced to generate a new signal. The covariance matrix of the new signal is calculated to obtain the noise 
statistics of each component, that is, the noise energy distribution can be obtained [11] [12]. 

If each IMF component  NI t has K  snapshot data, the rearrangement of  NI t is written as a N K  

matrix  X t , and the covariance matrix calculated as    HE    R X t X t , where the  H  is a conjugated symbol, 

 E   is the mean operator. 

The covariance matrix R includes noise intensity information for each IMF component. Eigenvalue 
decomposition is performed on the R  to obtain N eigenvalues and their corresponding eigenvectors. The thi  
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eigenvalue is i , and the value of the N  eigenvalues represent the noise intensity of IMF components. Compare the 
size of each feature and take out the larger L  IMF components for further filtering. 

Because the signal and noise part of  s t  are orthogonal to each other, the biorthogonal filter [13] [14] spline 

wavelet Biorthgonal 5.5 is used for adaptive filtering, and 6 layers are decomposed then thi  IMF components are 

expressed after filtering as  NI t . 

The IMF component of each order is superimposed as the last filtering result  Es t , and the reconstructed signal 

is  Es t , which is better than the traditional EMD method. 
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DETERMINATION OF CRACK LENGTH 

The appropriate signal is selected for experimental simulation, and the denoising performance of the traditional 
EMD algorithm and the improved adaptive EMD algorithm is compared. The square wave signal is selected as the 

original signal and the  s t is processed with noise.  

In order to compare the performance of the two methods accurately, the N  Monte Carlo simulation experiment 
is carried out in the case of different signal to noise ratio, and the root mean square error of the simulation results is 
RMSE. The smaller the RMSE value, the smaller the reconstruction error and the better the filtering effect. 
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Set up 800 Monte Carlo simulations, and the RMSE curve contrast diagram shown in Figure 1, shows that the 
improved EMD algorithm has a smaller RMSE value and a more effective filtering effect. 
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FIGURE 1. The contrast curve of RMSE 

CONCLUSION 

Aiming at non-stationary nonlinear signals, the EMD algorithm can achieve the denoising effect to a certain 
extent. Since the signal is nonstationary, the signal to noise ratio of different eigenmode components is different 
after superimposing noise. If the noise is too strong in an eigenmode component, the performance of the signal 
reconstruction will be worse. Therefore, by estimating the noise content in the different components, the multiple 

Advances in Intelligent Systems Research, volume 147

673



denoised components of the noise can be filtered and reconstructed, and the better performance of the signal 
reconstruction algorithm can be obtained compared with the EMD algorithm. 
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