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Abstract. Reinforcement learning algorithm for solving robotic locomotion control problem has achieved great progress. 
Use a Gaussian distribution to represent the locomotion policy of the robot is a general way. A locomotion policy means 
the distribution of action output. However, in real-world control problems, the actions are bounded by physical constraints, 
which introduces a bias when Gaussian distribution is used as the policy. This paper proposes logistic gaussian policy, can 
reduce both the bias introducing by Gaussian distribution and the variance between policy gradient samples. 
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INTRODUCTION 

In reinforcement learning, agent’s action based on policyߨఏ ఏߨ ,  is a function with parameterߠ, represent the 
probability of agent’s action. Agent’s action space are two types, continuous action space and discrete action space 
[1]. This paper discusses about continuous action space locomotion control task. Now the state of art algorithms like 
TRPO [2], PPO [3] are all based on stochastic policy gradient methods. Stochastic policy gradient methods assume 
that the agent’s policy ߨఏ  is following a gaussian distribution, ߨఏ~ࣨሺߤ, ଶሻߪ . Where ߤ  represents gaussian 
distribution’s mean and ߪ represents the standard deviation. Generally, can use function approximation, for example 
neural network [4], to represent gaussian policy’s mean ߤ and standard deviationߪ. And use backpropagation and 
stochastic gradient descent, compute the policy gradient [5] of gaussian policy’s mean ߤ and standard deviation ߪ to 
train the neural network effectively. 

But as research shows [6], use a gaussian policy with no bound will introduce boundary effect [6], will lower the 
speed of convergence of algorithm and lower the algorithm’s performance. This paper proposes logistic gaussian 
policy.to represent gaussian policy to solve the boundary effect problem. As experimental result shows, logistic 
gaussian policy can speed up the convergence of TRPO and get better performance than TRPO with gaussian policy. 

 BACKGROUND 

 Reinforcement Learning based on Continuous Action Space 

MDP (Markov Decision Process) is commonly using to modeling a reinforcement learning problem. MDP is 
represent by a five elements tuple 〈࣭,ࣛ,࣪, ࣬, γ〉 [7]. ࣭  represents action space, ࣛ  represents action space,࣪ 
represents a probability transition matrix, ݎሺݏ, ܽሻ represents reward function [8], γ is a discount factor, γϵሾ0,1ሿ.  

In a reinforcement learning problem, agent’s action based on policy ߨሺܽ|ݏሻ and interact with the environment, 
denoted as ܽ௧~ߨሺܽ|ݏሻ. During the interact time, will produce a trajectoryሼݏ଴, ܽ଴, ,଴ݎ … , ,்ݏ ்ܽ, ݎ் ሽ. It’s common to 
use value function to describe the reward sums in stateݏ, 	ܸగሺݏሻ ൌ ॱగൣݎ଴

ఊ|ݏ଴ ൌ  ൧[7]. Another definition for expectedݏ
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reward sums is action-value function, ܳగሺݏ, ܽሻ ൌ ॱగൣݎ଴
ఊ|ݏ଴ ൌ ,ݏ ܽ଴ ൌ ܽ൧. It defines the expected reward sums start 

from state ݏ and action ܽ during sampling. 
So, the objective function of policy is: 

ఏሻߨሺܬ ൌ ׬ గ࣭ߩ
ሺݏሻ ׬ ,ݏሺݎሻݏ|ఏሺܽߨ ܽሻ݀ܽ݀ࣛݏ

                                                 (1) 

Where ߩగሺݏሻ ൌ ∑ ௧ݏሺ݌௧ߛ ൌ ሻஶݏ
௧ୀ଴ the state is visited frequency without regularization [5]. 

According to policy gradient theorem [5], the form of policy gradient is above: 

ఏሻߨሺܬఏ׏   ൌ ׬ ሻݏగሺߩ ׬ ,ݏሻܳగሺݏ|ఏሺܽߨఏ׏ ܽሻ࣭݀ܽ݀ࣛݏ
                               

																																																																										ൌ ׬ ሻݏగሺߩ ׬ ࣭ࣛݏሻ݃௤݀ܽ݀ݏ|ఏሺܽߨ 		                                    (2) 

						ൌ ॱ࣭~ఘഏ,௔~గഇሾ݃௤ሿ  

Where: 

݃௤ ൌ ,ݏሻܳగሺݏ|ఏሺܽߨ݃݋ఏ݈׏ ܽሻ                                                          (3) 

For computational simplicity, it’s common to use enough samples to compute the average policy gradient sample 
݃௤
௔௩௚ to represent ݃௤ approximately. According to law of large numbers: 

݃௤
௔௩௚ ൌ

ଵ

௡
∑ ݃௤
௡
௜ୀଵ → ॱൣ݃௤൧ ൌ  ఏሻ                                             (4)ߨሺܬఏ׏

How to estimate policy gradient is very important in reinforcement learning, usually the policy gradient sample 
must be no-biased or low-biased. 

GAUSSIAN POLICY AND BOUNDARY EFFECT 

Using gaussian policy to solve reinforcement learning problem has been deeply research [9]. This is because the 
gaussian policy is easy to sampling and compute the policy gradient of gaussian policy is easy. 

But actually, gaussian policy is not a good choice for continuous control tasks. Because in these tasks, action is 
bounded, such as ܽ௧߳ሾെ݄, ݄ሿ. But because of boundary effect, this will introduce bias. 

We can define gaussian policy as: 

ሻݏ|ఏሺܽߨ ൌ
ଵ

√ଶగ
exp	ሺെ

ሺ௔ିఓሻమ

ଶఙమ
ሻ                                                           (5) 

Whereߤ ൌ ߪ ,ሻݏఏሺߤ ൌ  Agent’s action can be generated by .ߠ ሻ, given by a neural network with parameterݏఏሺߪ
sampling with the gaussian distribution. Usually we assume that ܽ ൌ ሻݏఏሺߤ ൅  ሺ0,1ሻ. The policyࣨ~ߦ where,ߦሻݏఏሺߪ
gradient of meanߤ, standard deviation ߪ are above: 

ఓ׏	  log ሻݏ|ఏሺܽߨ ൌ
ሺ௔ିఓሻ

ఙమ
                                                               (6) 

ఙ׏ log ሻݏ|ఏሺܽߨ ൌ
ሺ௔ିఓሻమ

ఙయ
െ

ଵ

ఙ
                                                             (7) 

To simplify the analysis of boundary effect, assume action spaceࣛ ൌ ሾെ݄, ݄ሿ. For apply the no bounded action 
space of gaussian policy to bounded action space, there are two methods: 
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1. Send the original action which is no bounded to environment, environment will clip the action to bound, this 
method using the no bounded original action to compute policy gradient; 

2. Clip the no bounded action, this method using the clipped action to compute policy gradient; 
For the first method, assume the policy’s action space is no bounded, then for all actions are out of bound, they 

have got the same reward. The policy gradient is: 

݃௤ᇱ ൌ ఏ׏ log ,ݏሻܳగሺݏ|ఏሺܽߨ ܽᇱሻ                                               (8) 

Where ܽᇱ is the clipped actions? The bias of estimating the policy gradient is: 

ॱൣ݃௤ᇱ ൧ െ ఏሻߨሺܬఏ׏ ൌ ॱ௦ሾ׬ ሻݏ|ఏሺܽߨ
∞

ି∞
,ݏሻܳగሺݏ|ఏሺܽߨ݃݋ఏ݈׏ ܽᇱሻ݀ܽሿ െ                       ఏሻߨሺܬఏ׏

																																																																						ൌ ॱ௦ሾ׬ ሻݏ|ఏሺܽߨ
ି௛
ି∞

,ݏሻሾܳగሺݏ|ఏሺܽߨ݃݋ఏ݈׏ െ݄ሻ െ

ܳగሺݏ, ܽሻሿ݀ܽ           (9) 

																																																		൅න ሻݏ|ఏሺܽߨ
∞

௛
,ݏሻሾܳగሺݏ|ఏሺܽߨ݃݋ఏ݈׏ ݄ሻ െ ܳగሺݏ, ܽሻሿ݀ܽሿ 

From (9), as ݄ → ∞, the bias goes to 0. But on the contrary, when the action space is bounded, clip the action will 
introduce bias. More seriously, as the standard deviation ߪ increase, bias will increase too. Because as the standard 
deviation ߪ increase, the actions out of the bound are more. As for the second method, the bias is even more. In method 
2, the policy gradient is: 

݃௤ᇱ ൌ ఏ׏ log ,ݏሻܳగሺݏ|ఏሺܽᇱߨ ܽᇱሻ                                                     (10) 

Compare with method 1, the bias is come from ܳగሺݏ, ܽᇱሻ and׏ఏ log  ሻ. So, method 2 will introduce moreݏ|ఏሺܽᇱߨ
bias than method 1. 

LOGISTIC GAUSSIAN POLICY 

For solving the problem of boundary effect, we present logistic gaussian policy. The agent’s action ܽ௦௜௚ with 
logistic gaussian policy can be define as below: 

ܽ௦௜௚ ൌ ܵ݅݃ሺܽሻ                                                                               (11) 

Where ܵ݅݃ represents logistic function, ܵ݅݃ሺxሻ ൌ ଵ

ଵା௘షೣ
. ܽ is generated by gaussian policy ߨఏ, ߨఏ~ࣨሺߤఏ,  ,ఏଶሻߪ

	ܽ ൌ ሻݏఏሺߤ ൅  .ሺ0,1ሻ, it’s easy to infer that ܽ௦௜௚ϵሾ0,1ሿࣨ~ߦ ,ߦሻݏఏሺߪ
We assumed that the problem’s action space ࣛ ൌ ሾ݉, ݊ሿ, then we can use the following transformation above: 

ܽ௢௨௧ ൌ ݉ ൅ ሺ݊ െ݉ሻ ∗ ܽ௦௜௚                                   .                              (12) 

Because of ܽ௢௨௧ has the same bound as action space	ࣛ. The boundary effect is no longer exists. Compare with the 
gaussian policy, logistic policy will decrease the bias introduce by boundary effect. For logistic gaussian policy, the 
policy gradient is: 

݃௤
௦௜௚ ൌ ,ݏሻܳగሺݏ|ఏሺܽߨ݃݋ఏ݈׏ ܽሻ ௔݂

ᇱ                      .                               (13) 

Where ௔݂
ᇱ means the first order derivation of logistic function to actionܽ. The variance of policy gradient is: 
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॰ൣ݃௤
௦௜௚൧ ൌ ॰ሾ׏ఏ݈ߨ݃݋ఏሺܽ|ݏሻܳగሺݏ, ܽሻ ௔݂

ᇱሿ                          .                       (14) 

We assumed thatܩ൫݃௤൯ ൌ ݃௤ ∗ ௔݂
ᇱ, ॿ~݃௤, according to first order expansions of Taylor expansions, we can get: 

॰ൣ݃௤
௦௜௚൧ ൌ ॰ൣܩ൫݃௤൯൧ ൌ ሺܩᇱሺॱሾ݃௤ሿሻଶ॰ൣ݃௤൧                     .                     (15) 

Whereܩᇱ ൌ ௔݂
ᇱ, it’s easy to get ௔݂

ᇱ ൏ 1, so: 

॰ൣ݃௤
௦௜௚൧ ൏ ॰ൣ݃௤൧                                                                 (16) 

In conclusion, logistic gaussian policy will lower the bias introduce by boundary effect and lower the variance 
when estimated the variance. So logistic gaussian policy has better performance and faster convergence than gaussian 
policy. 

EXPERIMENTS 

                   

FIGURE 1. Pendulum        FIGURE 2. InvertedPendulum    FIGURE 3. InvertedDoublePendulum 
 

Our experiments are based on reinforcement learning toolkit OpenAI gym [10]. Gym is a toolkit developed by 
OpenAI for compare the algorithms’ performance. And it provides interfaces to connect with neural network library, 
such as TensorFlow [11], Theano [12]. And we take reward sums in trajectory ሼݏ଴, ܽ଴, ,଴ݎ … , ,்ݏ ்ܽ, ݎ் ሽ to define the 
algorithm’s performance, where 	ܶ represents the end state’s timestep during sampling. 

We test logistic gaussian policy in Pendulum, Inverted Pendulum, Inverted Double Pendulum environment with 
TRPO algorithm. TRPO is the start of art continuous control reinforcement learning algorithms [13]. Pendulum is 
shown in Fig 1[6], the task is swing up a pendulum start at a random position. Inverted Pendulum is shown in Fig 2[6], 
the task is balance up an inverted pendulum start in a random position. Inverted Double Pendulum is shown in Fig3[6], 
the task is balance up a two joint inverted pendulum. The experimental setting can be seen above: 

 

TABLE1.The experimental setting 
Experiment Group Number Testing environment Algorithm setting 

1 Pendulum TRPO with and without Logistic Gaussian strategy
2 
3 

InvertedPendulum 
InvertedDoublePendulum

TRPO with and without Logistic Gaussian strategy 
TRPO with and without Logistic Gaussian strategy

 
The result of our experiments is can be seen from Fig 4, Fig 5, Fig 6. 
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FIGURE 4. Pendulum training curve 
 

 

FIGURE 5. InvertedPendulum training curve 
 

 

FIGURE 6. InvertedDoublePendulum training curve 
  

From the training curve both 3 groups, we can figure out that TRPO with logistic gaussian policy group shows 
better performance and faster convergence than TRPO with gaussian policy group in 3 tasks, As the experimental 
results show that logistic gaussian policy can be used in both simple locomotion task and complicated locomotion 
task. 

Advances in Intelligent Systems Research, volume 147

798



 CONCLUSION 

From the experimental results show, our logistic gaussian policy has better performance and faster convergence 
than gaussian policy. In addition, our analysis shows logistic gaussian policy can reduce the boundary effect and lower 
the policy gradient’s variance. In future, we can try apply our logistic gaussian policy with the other RL algorithm, 
such as PPO, Q-PROP [14], DDPG [15, 16]. 
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