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Abstract. Recently, model-free reinforcement learning algorithms such as TRPO for solving locomotion control tasks has 
achieved great success. But for difficult locomotion problem with high dimensional visual observation, these algorithms 
are not sample efficient. This paper proposes an OU process sampling strategy for locomotion control tasks. As 
experimental results show, TRPO algorithm with OU process sampling strategy shows better performance and better 
convergence compare with TRPO without OU process strategy. 
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INTRODUCTION 

Traditional methods to solve locomotion control tasks is modeling the specific problem and use control algorithm 
such as PID algorithm [1] to solve it. But for high dimensional control problems [2], modeling the problem can be 
very difficult and the traditional control algorithm will cost a lot of computation. Model-free reinforcement learning 
don’t need modeling the environment, it’s a good solution for this kind of problem.  

It’s generally to use stochastic policy gradient methods to solve the locomotion problem. In a control task, for 
agent’s policy | , |  is obeying a gaussian distribution, denoted as | ~ , , this is called gaussian 
policy. And with neural network to represent the gaussian policy’s mean , standard deviation , we can use 
backpropagation and stochastic gradient decent to train the neural network. Recently, the algorithms based on 
stochastic policy gradient methods have good performance in these control tasks, such as TRPO [3], PPO [4]. 

But there are two obstacles for reinforcement learning algorithms to solve locomotion tasks. 
During sampling process, once you set up your random seed for locomotion problem, it’s always the same initial 

state, you may always learn from the same start state, this is not sample effective; 
In locomotion control tasks, the control problem is very meticulous. So effective exploration is needed for get 

samples near the same state.  
For improve the sample efficiency, this paper proposes a sampling strategy with an Ornstein–Uhlenbeck process, 

use it to get better initial state and states near same state. As experimental results show, our methods have two 
advantages than the original algorithm without our strategy: 

More start state samples for better training; 
More samples near a same state for learning more meticulous controlling; 

BACKGROUND 

Reinforcement Learning and Policy Gradient Methods 

It’s common to modeling the reinforcement learning problem with a MDP (Markov Decision Process). MDP is 
represent by a five elements tuple 〈 , , , , γ〉 [5].  represents action space,  represents action space,  
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represents a probability transition matrix, denoted as | s, , ,  represents 
reward function [6], γ is a discount factor, γϵ 0,1 . In an MDP, agent’s action is based on a policy, which is represents 
by a conditional probability mapping from state space to action space, denoted as | . 

In a reinforcement learning problem, agent output an action by policy |  and do sampling with the 
environment, denoted as ~ | . Through the whole sampling process from start state to end state, will make a 
trajectory , , , … , , , [7]. The reward sums in timestep  of state , can defined as 
∑ , [6]. It’s common to introduce value function to describe the reward sums in state , 	

| [6]. It defines the expected reward sums start from state  during sampling. Another definition for 

expected reward sums is action-value function, , | , . It defines the expected reward 
sums start from state  and action  during sampling. 

In short, the goal of reinforcement learning is to learn a policy to maximize the expected reward sums start from 
initial state. The objective function of policy is: 

 

| ,  

                                  														 ~ , ~ ,                                                                              (1) 
 

Where ∑ the state is visited frequency [8]. 
The whole process for reinforcement learning can be seen in Fig1 above: 
 

 

FIGURE 1. RL learning process 
 

According to policy gradient theorem [2], the form of policy gradient is above: 
 

             | ,  

																	 | 		                                                     (2) 
 

						 ~ , ~   
Where: 
 

| ,                                                                 (3) 
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Sampling Strategies for Reinforcement Learning 

Usually we using epsilon-greedy [9] policy strategy, or Boltzmann exploration [10] strategy during sampling 
process. The epsilon-greedy policy is randomly take action in a small probability epsilonϵ, and take greedy policy in 
probability1 ϵ. The Boltzmann exploration is choosing random action by probability relative to expected rewards. 
Both of the two strategies will bring exploration for the state can’t reach by the RL agent. 

But these two strategies are not appropriate in locomotion control tasks. Firstly, these two strategies can’t reset the 
agent in a different state, but a good start state is very important for locomotion control tasks. Secondly, the locomotion 
tasks are a kind of meticulous control problem, the samples near a good state are the key to get good performance and 
better convergence. And actions to finish these tasks are very close, the random action from epsilon-greedy policy 
strategy and Boltzmann exploration strategy will break the correlation with actions between two close states.  

Another way for exploration in sampling is adding noise in action to get more state, but the random noise such as 
gaussian distribution presents, will break the continuous property when two actions are close. This is not good for 
learning continuous control agent. So, a better sampling strategy for exploration should not break the correlation with 
actions between close states. 

OU PROCESS SAMPLING STRATEGY AND ANALYSIS 

OU Process Sampling Strategy 

For solving the problem of continuous exploration in locomotion control task and get better initial state, we present 
an OU process sampling strategy. The strategy is composing of two parts: 

For getting a different start state, we use OU process to generate noise  with start action , where 
 

                                                                               (4) 
 

0,  and 0 are parameters,  is a small number, usually choose10 .  Is the iterative times,	 ∈ 1,  
and 0,0, … , all dimension of action  is 0. And then we send the action  to the environment to get a state 
close to start state. Where . 

For getting a better exploration, we use OU process to generate noise by (5) and add noise into the agent’s action . 
The agent’s action output is , where 

 
                                                                                (5) 

OU Process Analysis 

The OU (Ornstein–Uhlenbeck) process [11] is a stochastic process that, roughly speaking, describes the velocity 
of a massive Brownian particle under the influence of friction. The most important property of OU process is over 
time, the process tends to drift towards its long-term mean: such a process is called mean-reverting. This is a good 
property for doing exploration in continuous locomotion controlling tasks. 

OU process can be defined  satisfies the following stochastic differential equation: 
 

                                                                        (6) 
 

Where 0,  and 0 are parameters and  denotes the Wiener process. 
And for an iterative form of OU process can be defined as above: 
 

                                                                      (7) 
 

Where ~ 0,1 , 0,1  represents standard gaussian distribution. 
From (5), (6), we can note that the at time 1	the OU process output is correlated with the output at time . So, 

add an OU process output as action noise during sampling, is a good way to get a different start state close to the initial 
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start state generate by the random seed. And it’s a better way to do exploration in a continuous way near the previous 
action.  

For better understanding of the advantages of OU process strategy. We have done the following analysis. If we 
take decorrelated random signal with zero mean, its effect will be averaged over time and the system will simply 
oscillate without making much progress. Fig 2 shows an example with Gaussian noise 0,1 . On the contrary, if the 
noise generated at a given timestep is correlated to previous noise, it will tend to stay in the same direction for longer 
durations instead of immediately canceling itself out, which will consequently allow to increase velocity and unfreeze 
the position. Fig 3 shows an example of OU process. 

 

                    

FIGURE 2. Gaussian process noise                                      FIGURE 3. OU process noise 

EXPERIMENTS 

                           

FIGURE 4. Walker2d environment                                         FIGURE 5. Humanoid environment 

 
Our experiments based on OpenAI gym [12] with two difficult task Walker2d and Humanoid. OpenAI gym is a 

toolkit for developing and comparing reinforcement learning algorithms, it makes no assumptions about the structure 
of your agent, and is compatible with any numerical computation library, such as TensorFlow [13] or Theano [14].  

Walker2d task can be seen as Fig 4. Its goal is making a two-dimensional bipedal robot walk forward as fast as 
possible. The action dimension is 6 while the observation dimension is 17. It’s a standard testing environment for 
locomotion control tasks [15]. Humanoid task can be seen as Fig 5. Its goal is making a three-dimensional bipedal 
robot walk forward as fast as possible, without falling over.  

We testing our sample strategy with TRPO algorithm, it’s the start of art algorithm for locomotion control problem. 
Our experiments are compare TRPO with OU process strategy and without OU process strategy in “Walker2d” and 
“Humanoid” environment, the experimental setting is above: 
 

TABLE 1. The result of our experiments is can be seen 
Experiment Group Number Testing environment Algorithm setting 

1 Walker2d TRPO with and without OU process strategy
2 Humanoid TRPO with and without OU process strategy
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The result of our experiments is can be seen from Fig 6 and Fig 7: 
 

 

FIGURE 6. Walker2d experimental result 
 

 

FIGURE 7. Humanoid experimental result 
 
From Fig 6 and Fig7, we can see the OU process strategy with TRPO group can get better performance than No 

strategy with TRPO group, both in Walker2d and Humanoid. And the OU process strategy with TRPO group also 
shows faster convergence.  

CONCLUSION 

From the experimental results show, our OU process strategy can improve the performance and speed up the 
convergence of the start of art locomotion control algorithm TRPO. In addition, and in our analysis, OU process 
strategy will not break the correlation between actions during sampling period, so it’s a better choice for exploration 
in locomotion tasks. In future, we can try to test OU process strategy with other RL algorithm, such as PPO [4], Q-
PROP [16].  
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