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Abstract. The method of fundamental solution (MFS) has been known as an effective and simple boundary meshless 
algorithm. However, the MFS generates dense coefficient matrix and thus requires a lot of computation time for solving 
large-scale problems by using direct solvers in a personal computer. The generalized minimal residual algorithm 
(GMRES) is an iterative technique that can reduces computational operations for solving such dense matrix equations. 
This study combines the traditional MFS with GMRES iterative solver to calculate the two-dimensional acoustic 
scattering problems. With this approach, the operations are reduced to O (N2) while O (N3) operations are required for the 
traditional MFS using the direct solvers. Numerical examples with up to 20800 DOF are solved successfully on a laptop 
using the developed GMRES-MFS code. These results clearly demonstrate the efficiency and accuracy of the GMRES-
MFS for solving two-dimensional acoustic scattering problems. 
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INTRODUCTION 

Numerical simulation of the Helmholtz-type equations of time-harmonic acoustic waves has been an important 
topic of study in science and engineering. Since moving boundary in high dimension makes mesh generation a 
troublesome task, great attention and effort have been paid in recent years to meshless methods where neither 
meshing of the boundary nor domain is required [1], such as element-free galerkin method [2], method of 
fundamental solutions (MFS) [3], boundary knot method [4], Cartesian grid method [5], local boundary integral 
equation [6]. Among these methods, the MFS is the most effective and popular boundary-type meshless method due 
to its high accuracy, rapid convergence and easy implementation. In particular, the MFS is suitable for scattering 
and radiation problems by choosing appropriate fundamental solutions satisfying the radiation condition at infinity. 
These advantages with the MFS have attracted continued interests from researchers. However, the conventional 
MFS in general produce dense and non-symmetric matrices that require O (N2) memory storage and another O (N3) 
operations to solve the system with direct solvers, such as Gauss Elimination solver, LU Decomposition solver, 
where N is the number of equations of the linear system. 

Therefore, the scale of calculation is often limited to very small number of nodes by using traditional MFS. The 
efficiency in solving the MFS equations has been a serious problem for large-scale models. Although, many 
accelerated methods have been developed for large-scale acoustics problems, such as the fast multipole boundary 
element method [7, 8], but its complexity discourages beginners. A generalized minimal residual algorithm 
(GMRES) [9] can reduces the O (N3) operations to O (N2) operations, and with the continuous improvement of 
personal computer performance, memory storage is not a problem for models which are not very large. The purpose 
of this paper is to investigate how to apply the MFS to solve a model that is not very large with a personal computer. 
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This paper is organized as follows: Section 2 introduces the conventional MFS formulation for 2D acoustic 
scattering problems. Section 3 introduces the procedures of generalized minimal residual algorithm. Section 4 shows 
some example problems solved by using the provided code to demonstrate the efficiencies of the GMRSE-MFS with 
personal computer. Section 5 concludes this paper with some discussions. 

SCATTERING THEORY OF MFS 

Consider a time-harmonic acoustic wave in an infinite, homogeneous acoustic medium of mean density ρ and 
sound speed c0. The acoustic medium domain is Ω. The wave incident upon one (or more) rigid, fixed obstacle 
occupying the region Ωi with boundary ∂Ω in 2D as shown in Fig.1. The acoustic pressure Pat point xΩ obeys the 
governing differential equation for steady-state linear acoustics, as well as the following well known Helmholtz 
equation [10, 11]. 

 

                                                                   022  (x)Pk(x)P    x                                                          (1) 

 
Here, Ω=ΩiΩe, and k=/c0 is the classical wave number defined as the radio of the angular frequency  and the 

sound speed c0.  
 

 

FIGURE 1. Scattering geometry 
 
The scattered wave is defined by 
 

                                                                                  incsca PPP  ,                                                                     (2) 
 

Where Pinc and P represents the incident acoustic wave and total acoustic wave. In the case the incident wave is a 
plane wave defined as Pinc=Aincexp(ikζꞏx) (with time convention e-it ), where the ζꞏx controls the direct of the 
incident wave, and Ainc is acoustic pressure amplitude.  

On ∂Ω, the boundary of the rigid scatterer, vꞏn=0, where n is the unit normal to ∂Ω, that is, ∂P/∂n=0, rewriting 
the problem in terms of Psca gives:  
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In addition, Psca must satisfy the Sommerfeld radiation condition at infinity 
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Where
e x,xr  

 
In the method of fundamental solutions, we place N collocation points (xi, i=1, 2 … N) on the boundary and 

another N auxiliary or source points (yj, j=1, 2 … N) outside the domain Ωe (Fig.1). The locations of the sources and 
the source intensities are solved simultaneously using a nonlinear least-squares approach, which can remove the 
uncertainty in determining the distance between the sources and the boundary. The scattered field Psca at each point 
xi is approximated by the following expression which satisfies Eq. (1) or Eq. (3): 
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Where  
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Is the free space Green’s function for 2D acoustic problems, 1-i , ji y-xr 
 is the distance between the 

collocation point xi and the field point yj, H0
1 is the Hankel function of the first kind with 0th order. U (yj) is the 

unknown intensity of the sources at the auxiliary point’s yj. By substituting Eq. (6) into Eq. (4), we have 
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In the conventional MFS approach, the following standard linear system of equations is formed after applying Eq. 

(8) at all the collocation point’s xi (i=1, 2 … N): 
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Where A is the coefficient matrix, u the unknown vector and b the right-hand side vector.  
Once all the values of u are determined by solving this equation, the acoustic pressure at any point inside the 

domain Ωe or on the boundary ∂Ω can be evaluated using Eq. (2) and Eq. (6). 
In the conventional method of fundamental solutions, the solution of the system in Eq. (10) using direct solvers 

such as Gauss elimination requires O (N3) operations. Such characteristics of the conventional MFS have limited its 
applications in solving large-scale problems. 
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 THE PROCEDURES OF GMRES 

For the conventional MFS, the discretization of integral equation leads to a dense, non-symmetric system matrix 
which is expensive to store and solve. For an acoustic problem with N unknowns, a direct solution of such linear 
system requires O (N3) operations and O (N2) memory storage. However, for iterative solver, only the multiplication 
of matrix and vector is required in iteration process, there is no need to decompose the coefficient matrix of linear 
system. A iterative solver called generalized minimal residual algorithm (GMRES) is the most popular to solve the 
linear system equation 

 For the linear system equations, such as Eq. (10), the basic steps of the GMRES iterative solver are as follows. 

Step 1. Initialization: Choose u0, and compute 0 0= b Au  , and 1 0 /v    where 0  . 

Step 2. Iterate: For j=1, 2, m, until satisfied do: 
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matrix. 
Step 3. To solve the least squats problem: 
 

                                                               1min
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Hence the solution is 0m m mu u V Y  , where  1 1,0,0,
T

e =  ,  1 2, , ,m mV v v v  . 

Step 4. To compute m mb Au   ,if /m    is satisfied, where   is converges, then stop, and mu  is 

the final solution. If not, update u0 to mu , compute /m m mv    and go to Step 2. 

In order to accelerate the solution, preconditioners for the GMRES-MFS are crucial for its convergence and 
computing efficiency. We use a block diagonal preconditioner, which is form by adjacent collocation points and 
source points. The application of the sparse approximate inverse preconditioned GMRES to the linear system for 
solving acoustic problems is presented by Chen and Harris [12]. 

NUMERICAL EXAMPLES  

Numerical examples are presented to demonstrate the feasibility, accuracy and efficiency of the GMRES-MFS 
for 2D acoustic problems. We compare the efficiency and accuracy of the developed GMRES-MFS with those of 
the conventional MFS based on direct solvers. The algorithm is implemented in Fortran 90 and tested on a laptop 
with an Intel Dual Core 2.2 GHz CPU, 3 GB RAM. The iterative tolerance is set to 10−3.  

Scattering from a Rigid Cylinder 

As an example, to test the accuracy of the program, we compute acoustic wave scattered by an infinite rigid 
cylinder of radius a=0.5 with a plane incident wave of unit amplitude travelling along the positive x-axis (θ= 0) in a 
direction perpendicular to the axis of the cylinder. Wave number is set to 5. Sample filed points are evenly 
distributed on a circle of r = 2a, as shown in Fig. 2. Theoretical sound pressure at point (r, θ) is given as 
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where εm is Neumann constant, Jm’ and H1

m’ mean derivative of Jm and H1
m with respect to ka. Field pressure 

plotted in that the accuracy of the program. 
Fig. 2 shows the field pressure contour plot for scattering of rigid cylinder with wave number k=5. The field 

pressures, on a circle of r = 2a, given by GMRES-MFS and analytical way are compared as shown in Fig. 3.  
  

 
FIGURE 2. Sound pressure contour plot for scattering of a rigid cylinder 

 
 

 
FIGURE 3. Sound pressure given by analytical and GMRES-MFS 

Scattering from Four Rigid Cylinders 

Fig. 4 shows the field pressure contour plot due to the incident plane wave with radius a=0.5 m and wave 
number k=2π/5 on a group of four rigid cylinders arranged at the vertices of a square. The plane wave of unit 
amplitude is travelling along the positive x-axis (θ = 0). Compared to the results shown in the Fig.9 of Ref [13], 
Fig.4 shows the same results. 
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FIGURE 4. Sound pressure contour plot for scattering of four rigid cylinders 
 

 

FIGURE 5. CPU time consuming with different methods 
 
With the same numerical model of four rigid cylinders scattering and wave number k=4. Fig.5 shows the CPU 

time for the GMRES-MFS in solving these relatively large models with increasing degree of freedom, as compared 
with the conventional MFS by using LU Decomposition solver. It is being seen that the total CPU time increases 
two curves for the GMRES-MFS and LU-MFS show the order O(N2) and O(N3) computational efficiencies, 
respectively. This numerical example clearly demonstrates the developed algorithm is efficient for solving relatively 
large-scale acoustic problems in personal computer. 

MECS-Shaped Model Analysis  

Fig.9. shows the rigid MECS-shaped model scattering problem with wave number k=5, and the plane incident 
wave of unit amplitude travelling along the negative y-axis (θ= 3π//4). The MECS-shaped scattering model contains 
20800 collocation and source points. It takes 32 iterations and 4036 seconds; the scattering problem of rigid MECS-
shaped model is solved successfully on a laptop PC. 
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FIGURE 6. Sound pressure contour plot for scattering of MECS-Shaped Model 

CONCLUSION 

In this paper, we proposed a GMRES-MFS with preconditioning for solving 2D acoustic scattering problem. The 
computational efficiency of the developed algorithm is improved by adopting the approximate inverse 
preconditioned GMRES iterative solver to solve system equation. Numerical results show that computational time of 
the proposed GMRES-MFS are at the rate of O (N2) while the traditional MFS requires O (N3) operations using 
direct solvers. The numerical examples including a model with 20800 DOF are solved successfully on a laptop PC. 
These examples clearly demonstrate the accuracy and efficiency of the developed fast algorithm for solving 2D 
acoustic scattering problems. 

It notices that the method proposed in this paper also has shortcomings. Because of the O (N2) computational 
time and memory storage, the application of the proposed GMRES-MFS for the computation of very large-scale 
models is limited. However, because of the similarity of the BEM and MFS, it is natural to apply the fast multipole 
method (FMM) to accelerate the solutions of the MFS, and this will be an important improvement in the efficiency 
of the MFS for large scale acoustic problems. 
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