
Optimality Conditions for a Class of Optimization 
Problem in Banach Spaces 

Xuanwei Zhou* 
School of Basic Courses, Zhejiang Shuren University, Hangzhou 310015, China  

*Corresponding author 
 

 
Abstract—In this paper, a class of optimization 

problem is studied. The objective function is a functional 
in a Banach space and the constraint is cone constraint 
where the cone doesn’t need nonempty interior. The 
concept of the conjugate function is introduced and a 
duality theorem is established. Then, by use of the duality 
theorem and Robinson's constraint qualification, some 
optimality conditions for the optimization problems in 
Banach space are obtained. 
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I. INTRODUCTION 

Optimality condition is an important topic in optimization: 
it is useful not only for identifying solutions of the problem, 
but it is also crucial in designing numerical methods for 
approximating the solutions. It is well known that duality 
theorem is very useful for optimality condition in optimization 
problem (see [1]–[10]). 

In 1961 Wolfe first obtained a duality theorem for 
differentiable convex programming(see [11]). Afterwards, a 
number of different duality theorems distinct from the Wolfe 
dual are proposed for the nonlinear programs by Mond and so 
on (see [12]). Duality theorems for multiobjective 
programming problems with generalized convexity conditions 
were given by several authors (see [13]–[18]) . In these 
papwrs, by using the duality theorems, optimality conditions 
of optimization problems are also obtained in finite 
dimensional space. 

In this paper, we give some optimality conditions of 
optimization problem in infinite dimensional space. The 
objective function is a functional of Banach space and the 
constraint is cone constraint. Specially, the constraint cone 
don’t need nonempty interior. The concept of the conjugate 
function is introduced and a duality theorem is established. 
Then, by use of the duality theorem and Robinson's constraint 
qualification, the optimality condition for the optimization 
problems is obtained. 

II. DEFINITIONS AND LEMMAS 

Let X  be a Banach space, let *X  be the dual of X .  A 
subset K of X is said to be a convex cone if 

0,,,, 2121   KxxKxx . 

A positive cone is a convex cone with apex at the origin. 

A Banach space X  with a convex cone is said to be an 
ordered Banach space. The partial order on X  is defined 

by 21 xx K if and only if Kxx  12 , 2int1 xx K  if and 

only if Kxx int12   if  int K   , where Kint  is the 

interior of K . 

Setting *K = },0,:*{ KxxX   , *K  is 

said to be the dual cone of the positive cone K  . 

Definition 1 Let : { }f X R     be  a real valued 

function. It is said that f is   proper if its domain is nonempty 

and ( )f x    ( x X  ).  It is said that f  is convex  if 

1 2, ( ),x x dom f   and (0,1)t  , 

1 2 1 2( ) (1 ) ( ) ( (1 ) )tf x t f x f tx t x     . 

Definition 2. Let X be a Banach space, let Y  be an 
ordered Banach space with a positive cone K .  A function 

:G X Y is said to be K -convex on X  if and only if 

,, 21 Xxx  (0,1)t  ,  

1 2 1 2( ) (1 ) ( ) ( (1 ) )tG x t G x G tx t x K     
. 

Definition3. Let X be a Banach space, let *X  be the dual 
of X , and let : { }f X R    be a real valued 

(possibly nonconvex) function. A function *: *f X   

{ }R    defined by 

*( *) sup{ *, ( )}
x X

f x x x f x


   
. 
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is called the conjugate function of .f   In a similar way, given 

: * { }g X R   , its conjugate *: { }g X R    
is defined as 

* *
*( ) sup{ *, ( *)}

x X
g x x x g x


   

. 

Then 

* *
**( ) sup{ *, *( *)}

x X
f x x x f x


   

. 

The following results are well known. 

Lemma1 (Fenchel-Moreau-Rockafellar)  Let :f X   

{ }R    be a real valued function. Then 

** ( )f cl convf . 

The above lemma implies that **f f  if and only if 

f  is convex and closed. 

Lemma2 Let : { }f X R    be a real valued 

convex function. If f  is continuous at 0 , then ( )f cl f . 

III. OPTIMIZATION PROBLEM 

In this section, we discuss the following optimization 
problem.  

Let X  be a Banach space, let Y  be an ordered Banach 
space with a positive cone K . We consider the program 

(P)                         min ( )f x , s.t. ( )G x K , 

where :f X R , :G X Y , K Y is a convex closed 
cone.  

The above problem  (P)  has the feasible set 

{ : ( ) }D x X G x K   . 

Denote ( )KI   the indicator function  of  a nonempty set  

K ,  then problem  (P) takes the form 

1
min{ ( ) ( ( ))}Kx X

f x I G x


. 

embed  (P) into the family of optimization problems 

( yP )                        
1

min{ ( ) ( ( ) )}Kx X
f x I G x y

  , 

where y Y  is the parameter vector. Clearly, for 0y  , 

the corresponding problem ( 0P ) coincides with the problem 

(P).  Problem ( yP ) amounts to minimization, with respect to 

x , of  the function 

( , ) ( ) ( ( ) ).Kx y f x I G x y     

Denote the corresponding optimal value function by ( )v y , 

that is ( ) ( )yv y val P , 

or, equivalently, ( ) inf ( , )
x X

v y x y


 . 

It is easy to know  

* *
**( ) sup{ *, *(0, *)}

y Y
v y y y y


    . 

This leads to the following definition of the dual problem: 

( yD )                        
* *

max{ *, *(0, *)}
y Y

y y y


   , 

We refer to the above problem ( yD ) as the conjugate dual 

of ( yP ). In particular, for 0y   the corresponding problem 

( 0D ) becomes 

( D )                              
* *

max{ *(0, *)}
y Y

y


 , 

and is viewed as the dual of  ( P ). Clearly, ( ) ( )yval P v y  

and ( ) **( )yval D v y .  

Lemma3 Let K be a convex closed cone and 

:G X Y  be K -convex on X , then ( ( ) )KI G x y   is 

convex. 

Proof. It is only to show that the set 
{( , ) : ( ) }x y X Y G x y K     is convex. If for any 

1 1 2 2( , ), ( , ) {( , ) : ( ) }x y x y x y X Y G x y K     , 

then 

1 1( )G x y K  , 2 2( )G x y K  . 

Since G  is K -convex, for any  [0,1]t ,  
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1 2 1 2( ) (1 ) ( ) ( (1 ) )tG x t G x G tx t x K      . 

So 

1 2 1 2( (1 ) ) (1 )G tx t x ty t y      

1 2 1 2( ) (1 ) ( ) (1 )tG x t G x K ty t y      
(1 )tK t K K K      . 

It means that {( , ) : ( ) }x y X Y G x y K     is convex.  

Lemma4 If  the  function  ( )f x   is convex, then the  

optimal  value function  ( )v y   is convex. 

Proof. Clearly, ( , ) ( ) ( ( ) )Kx y f x I G x y     is 

convex, then for any  1 2,x x X , 1 2,y y Y  and  [0,1]t , 

1 1 2 2 1 2 1 2( , ) (1 ) ( , ) ( (1 ) , (1 ) )t x y t x y tx t x ty t y        

1 2( (1 ) )v ty t y   . 

Minimizing  the  left hand side over  1x   and 2x ,  we 

obtain 

1 2 1 2( ) (1 ) ( ) ( (1 ) )tv y t v y v ty t y    
, 

which shows  that  ( )v y  is convex. 

Lemma5 Suppose that (i) the function :f X R  is 

convex and continuous, and K is a convex closed cone, and 
:G X Y  is K -convex and continuous;  (ii) ( )val P  is 

finite;  (iii)  the set ( )S D , of optimal solutions of the dual 

problem, is nonempty;  (iv) the set  ( )G X K  has a 

nonempty relative interior. Then ( ) ( )val P val D  

Proof.  Since ( ) **(0)val D v  and ( )S D  is 

nonempty,  we have that **(0)v is finite. By that 

( ) **(0)S D v  , we have that  **(0)v is nonempty. 

This implies that  ( **) (0) {0}dom vN  . Since ( **)dom v  

coincides with the topological closure of ( )dom v ,  it follows 

that the linear space generated by ( )dom v  is dense in Y . 

Since it is assumed that ( )dom v  has a nonempty relative 

interior, we have then that the interior of ( )dom v  is 
nonempty. Consequently, by the convex sets separation 
theorem, 0  can be separated from ( )dom v  if and only if 

0 int( ( ))dom v . Clearly, if 0  can be separated from 

( )dom v , then ( ) (0)dom vN  ( **) (0) {0}dom vN  . Therefore, 

we obtain that 0 int( ( ))dom v . It follows that ( )v y  is 

continuous at 0 , and hence by lemma1 and lemma2, 
( ) ( )val P val D .   

Theorem1 Suppose that (i) the function :f X R  is 

convex and continuous, and K is a convex closed cone, and 
:G X Y  is K -convex and continuous; (ii) ( )val P  is 

finite;  (iii)  the set ( )S D , of optimal solutions of the dual 

problem, is nonempty;  (iv) the set ( )G X K  has a 

nonempty relative interior. If 0x X is optimal solution of 

problem (P), then there exists *y K  such that  

0 arg min ( , *)
x X

x L x y



 and 0*, ( ) 0y G x  

, 

where ( , *) ( ) *, ( )L x y f x y G x     is the Lagrangian 
function of the problem (P). 

Proof. Note that the domain of the function 

( , ) ( ) ( ( ) )Kx y f x I G x y    is nonempty.  Indeed, 

since f  and KI  are proper, we take  y K . Then 

( , ( )) ( ) ( ) ( )Kx y G x f x I y f x       , 

and hence ( , ( )) ( )x y G x dom   . Moreover, 

( , )x y   ( ( , )x y X Y   ),  and hence  ( , )x y  is 

proper. The function ( , )x y is lower semicontinuous since 

KI  is lower semicontinuous,  and f  and G  are continuous.   

The conjugate  function  of ( , )x y , 

,

*( *, *)

sup { *, *, ( ) ( ( ) )}

sup{ *, ( ) *, ( ) }

sup{ *, ( ) ( ( ) )}

sup{ *, ( ) *, ( ) }

sup{ *, ( ) ( ( ) )}

sup{ *, ( , *)}

K
x X y Y

x X

K
y Y

x X

K
y Y

x X

x y

x x y y f x I G x y

x x f x y G x

y G x y I G x y

x x f x y G x

y G x y I G x y

x x L x y




 













        

      

     

      

     

     sup{ *, ( )}

sup{ *, ( , *)} *( *)

K
y Y

K
x X

y y I y

x x L x y I y







  

    

 

The dual problem ( yD ) can be written in the form 
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( )yD      
* *

max{ *, inf ( , *)} *( *)}K
x Xy Y

y y L x y I y
    . 

In  particular, for 0y  ,  the dual  of  (P)  is 

( )D         * *
max{ *, inf ( , *) *( *)}Kx Xy Y

y y L x y I y
   

 . 

From lemma5,  ( ) ( )val P val D ,  and there exist the 

optimal solution 0x X  of  problem  (P) and the optimal 

solution * *y Y of dual problem ( D ) such that   

0 0( ) ( ( )) inf ( , *) *( *)K Kx X
f x I G x L x y I y 

  
. 

This is 

0 0

0

( ( , *) inf ( , *)) ( ( ( ))

*( *) *, ( ) ) 0.

K
x X

K

L x y L x y I G x

I y y G x





 

    
 

Clearly, 0( , *) inf ( , *) 0
x X

L x y L x y


  and 

0 0( ( )) *( *) *, ( ) 0.K KI G x I y y G x       

Therefore,  0( , *) inf ( , *) 0
x X

L x y L x y


  , 

0 0( ( )) *( *) *, ( ) 0.K KI G x I y y G x       

The equality 0( , *) inf ( , *) 0
x X

L x y L x y


   means 

0 arg min ( , *)
x X

x L x y


 , and another equality 

0 0( ( )) *( *) *, ( ) 0K KI G x I y y G x       holds if and 

only if   0* ( ( ))Ky I G x  0( ( ))KN G x . Since K  is a 

convex cone, the condition 0* ( ( ))Ky N G x  is equivalent 

to *y K   and 0*, ( ) 0y G x   .      

 Now we consider the smooth (not necessarily convex) 
case. 

Theorem2 Suppose that the function :f X R    and 

the mapping :G X Y   are  continuously differentiable. If 

0x X is optimal solution  of  problem  (P), and 

the  Robinson's constraint qualification 

0 00 int{ ( ) ( )( ) }G x DG x X K    

holds,  then there exists *y K  such that 0( , *) 0DL x y   

and 0*, ( ) 0y G x   . 

Proof. We will show that 0h   is an optimal solution  of  
the linearize problem 

( LP )       0min ( )
x X

Df x h


, s.t. 0 0( ) ( )G x DG x h K  . 

Indeed, if 0 0{ : ( ) ( ) }h h X G x DG x h K    , 

then by the  Robinson's constraint qualification, there exist 

sequences 0nt
  and 0 ( )n n nx x t h t    such that 

nx D . Since 0x is optimal solution of problem (P), it 

follows that 

0
0

( ) ( )
( ) lim 0n

n
n

f x f x
Df x h

t


 

, 

and consequently 0h   is an optimal solution of the problem 

( LP ). Replacing ( )f x  with 0( )Df x x  and ( )G x  with 

0 0( ) ( )G x DG x x in theorem1, we have that there exists 

*y K   such that 0( , *) 0DL x y   and 0*, ( ) 0y G x   . 

IV. CONCLUSION 

Optimality condition for optimization problems is a very 
active field. Among important contributions that were not 
quoted yet (see[19]-[22]), we only mention the work based on 
constraint qualification and duality theorem.  

This paper presents a new type of optimization problems in 
infinite dimensional Banach space. This new optimization 
problem extend finite dimensional space to infinite 
dimensional and inequality constraints to cone constraint. The 
constraint cone doesn’t need nonempty interior that 
generalizes the classical one, when the interior of constraint 
cone is nonempty. A duality theorem is established by using 
Robinson's constraint qualification. Then the optimality 
condition for this optimization problem is obtained. 

As pointed out by an anonymous referee, we will study 
then how to obtain first order sufficient optimality conditions 
and general second optimality conditions for this optimization 
problem, and how to discuss composite optimization, the case 
of nonisolated optimal solutions and specific aspects such as 
quadratic programming, reduction procedures, and exact 
penalty functions. 
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