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Abstract—With the significant advancements in Information 
and Communications Technology (ICT), computer simulations 
have been widely used in natural sciences and engineering 
analysis. Algorithms for parameters optimization in computer 
models have been necessity in computer modeling due to the 
accuracy requirements. As a principal branch of computer 
models, hydrological models have been a fundamental method for 
researching hydrological processes. In this paper, a computer 
model of the groundwater system in the middle reaches of the 
Heihe River Basin was established. Geological features of 
different regions were characterized by sub-zones of parameters 
in the model which were optimized by Particle Filter. The 
effectiveness for Particle Filter of optimizing the parameters of 
numerical models was verified. The results indicated significant 
improvements of parameters after 100 time-steps which 
converged to optimal value. Meanwhile, the difference between 
simulated and observed groundwater level was reduced along 
with the parameters convergence. 

Keywords—computer simulation; parameter optimization; 
particle filter 

I. INTRODUCTION 

The purpose of parameters optimization in computer 
modeling is to match model outputs and observations as much 
as possible by minimizing objective function. Direct and 
indirect optimization algorithms are the most common 
optimization algorithms. Differentiability is the principal 
limitation of indirect algorithm (such as Newton's method and 
its improvements). Compared to indirect algorithm, 
differentiability is not a necessity for direct algorithm by 
calculating the value of objective functions. Therefore, 
although the computation cost of direct algorithm is larger 
then the indirect one, the direct algorithm is able to avoid the 
indifferentiability in indirect algorithms and have been widely 
used in the applications of environmental simulations. 
Currently, groundwater cycle and associated processes which 
could be megascopic or microscopic can not be fully simulated 
by groundwater models which are based on prior 
measurements and parameters in other documents. Therefore, 
parameters optimization based on measurements are necessary 
for groundwater models. 

In a Bayesian framework, the mean and variance of state 
variables could be obtained from the posterior probability 
density function of system states and parameters only if the 

posterior probability density function of system states and 
parameters could be estimated from measurements. The 
Kalman Filter (KF) is the most popular algorithm to estimate 
posterior probability density function for Linear Gaussian 
Systems. Later in 1960s, the Extended Kalman Fileter (ETF) 
and Gaussian Sum Filter were introduced to approximate the 
posterior probability density function of states and parameters 
for Nonlinear non-Gaussian Systems. However, the accuracy, 
stability and convergence of these algorithms cannot satisfy 
the requirements. Early in 1950s, Sequential Importance 
Sampling (SIS) method which was based on Monte Carlo 
method was introduced by [1]. However, SIS was not evolved 
until 1993 with the proposal of resampling technique and 
improvements of computation resources, after which, SIS have 
been applied to many fields. Recent years, researches have 
proposed many nonlinear filters based on Bayesian estimation 
(Bootstrap Filter [2], Condensation Tracks [3], Particle Filter 
[4], Sequential Monte Carlo Method [5], Interacting Particle 
Approximations [6]) in the fields of fault diagnosis, signal 
transmission and compression, target tracking, navigation and 
financial data analysis. Particle Filter (PF) was proposed as a 
general name for “bootstrap”, “Survival of the fittest” or 
“Sequential Monte Carlo”. 

KF is able to approach the optimal solution by recursively 
estimating state variables from measurements under the 
assumption of Linear Gaussion System. In PF, particles 
(samples) are used to approximate the prior probability density 
function and Bayesian Theory is used to update the particles in 
order to estimate posterior probability density function which 
avoids the assumption of Linear Gaussion System. Therefore, 
PF has intrinsic advantages to solve nonlinear problems. With 
the rapid improvement of computation capacity and the 
resolving of particle degeneracy, PF has been widely used in 
many fields [7]. 

In this paper, we established a groundwater model in the 
middle reaches of the Heihe River Basin using MODular 
three-dimensional finite-difference ground-water FLOW 
model (MODFLOW). Based on the observed groundwater 
level, parameters of the groundwater model were estimated 
and optimized using Particle Filter 
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II. Method 

A. Particle Filter 

Particle Filter (PF) is a kind of Sequential Monte Carlo 
methods based on Bayesian Theory and has been widely used 
in resolving problems related to Sequential State Estimation. 
The basic idea of PF is that the posterior probability density 
function of system states is approximated by a set of particles 
(samples) and the corresponding weights for each particle. 
First, n particles ( (1) (2) (N)

1 1 1{ , ,..., }k k kx x x   ) are sampled from the 
posterior probability density function of system states 
(  1 1k kP x z  ) in time k-1. Second, the particles 

( (1) (2) (N){ , ,..., }k k kx x x ) and weights ( (1) (2) (N){w , w ,..., w }k k k ) in time k 
are estimated and updated based on the given state transition 
function and the measurement function when the observation 
of time k becomes available. These particles are then used to 
approximate the posterior probability density function of 
system states. As the number of particles becomes large 
enough, the estimation of PF reaches the optimal solution. 

There are three foundations of PF which are: (1) Recursive 
Beyesian Estimation, (2) Sequential Importance Sampling and 
(3) Sampling Importance Resampling. 

1) Recursive beyesian estimation 
We consider the following nonlinear system: 

 1k k kX M X w                               (1) 

where X represents the vector of all state variables and 
parameters with length Nx, M(•) represents the nonlinear state 
transition function (model operator). wk denotes the noise 
processes at time step k. 

After the measurements at time step k become available. 
The parameters and states variables can be transferred to 
measurement space using (2). 

 k k kY H X                                   (2) 

where Yk represents measurements at time step k. H denotes 
observation operator as a function of model parameters and 
forecasted state variables. εk is the observational noise.  

Let Dn = {Yi; i = 1, 2, …, n} be the set of all the available 
observations at time step k. Assume the posterior probability 
distribution of state variables p(Xk-1|Dk-1) at time step k-1 is 
known. By applying Chapman-Kolmogoroff (CK) equation, 
the prior probability distribution of state variables at time step 
k can be calculated as: 

     1 1 1 1 1| | |k k k k k k kp X D p X X p X D dX          (3) 

where p(Xk|Xk-1) is state transition probability density function 
which is determined by (1). Equation (3) indicates that the 
prior probability distribution of state variables at time step k 
summarize all the information of state variables. When the 

observations at Yk becomes available, the posterior probability 
distribution of state variables can be calculated by applying 
Bayes’ rule: 

     
 

1

1

| |
|

|
k k k k

k k

k k

p Y X p X D
p X D

p Y D




                (4) 

2) Sequential importance sampling 
In PF, the posterior probability distribution of state 

variables is approximated by particles (samples) and their 
corresponding weights: 

   0: 1: 0: 0:
1

|
pN

i i
k k k k k

i

p X Y w X X


                   (5) 

where,  ,i i
k kX w  represent the ith particle and its weight at 

time step k, respectively. Np denotes the total number of 
particles. δ(•) represents the Dirac delta function. 

The weights of particles should satisfy: 

 
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The weights of particles are updated following [5, 8]: 

   
 
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3) Sampling importance resampling 
Resampling is introduced to resolving the particle 

degeneracy which is able to eliminate particles with lower 
weights and increase particles with higher weights.  

4) Brief implementation of PF 
Step 0: Initialization 

K = 0 

Nth = N0 

For i = 1, 2, …, N, sample particles  0 0
ix p x . 

Let k = 1. 

Step 1: Sequential Importance Sampling 

For i = 1, 2, …, sample particles  0 1
i i

k kx p x x  . 

Let 0: 0: 1( , )i i i
k k kx x x  

For i = 1, 2, …, N, estimates the weights for particles 
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Step 2: Sampling Importance Resampling 

Eliminate the particles with lower weights and resample 
particles with higher weights 

Step 3: Output 

Step 4: Let k = k + 1, repeat Step 0 to Step 5. 

B. Groundwater Model 

Modular three-dimensional Finite-difference ground-water 
Flow Model (MODFLOW) was used to establish the 
groundwater model. MODFLOW was developed by U.S. 
Geological Survey (USGS) in 1980s and had been widely used 
all over the world since then. There were many packages in 
MODFLOW which could simulate hydrology processes such 
as streamflow, drain, evapotranspiration, precipitation, 
irrigation and recharge. The concept of Stress Period was used 
in the partial-differential equation for the three-dimensional 
movement of ground water (refer to (8)). The whole 
simulation period was separated into several Stress Periods 
which were further separated into several Time Steps. During 
one Stress Period, all the parameters, boundaries and model 
settings were identical. 

xx yy zz s

h h h h
K K K W S

x x y y z z t

                           
   (8) 

where Kxx, Kyy, Kzz are values of hydraulic conductivity along 
the x, y and z coordinate axes [LT-1]; h represents the 
potentiometric head [L]; W is a volumetric flux per unit 
volume representing sources and/or sinks of water, with W < 
0.0 for flow out of the groundwater system, and W > 0.0 for 
flow into the system [T-1]; Ss is the specific storage of the 
porous material [L-1]; and t is time [T]. In MODFLOW, the 
finite-difference method is applied to solve the equation 
approximately. As shown in Figure Ⅰ, the aquifer system is 
discretized to a grid of blocks called cells, the locations of 
which are described in terms of rows, columns and layers. An i, 
j, k indexing system is used. 

 
FIGURE I.  SPACIAL DISCRETIZATION OF AN AQUIFER. 

C. Data Collection and Model Settings 

The data which were collected from the middle reaches of 
the Heihe River Basin (HRB) were used to construct the 
groundwater model. The middle reaches of the HRB which 
located in the northwest of China (38°38’ ~ 39°53’ N, 98°53’ 
~ 100°44’ E; Figure Ⅱ (a)) was dominated by a typically arid 
continental climate with limited rainfall, but strong 
evaporation. The data include Digital Elevation Model (DEM), 
land use, groundwater pumping yields, observed groundwater 
level and streamflow rates. Land use data were obtained 
through visual interpretation of Landsat TM/ETM+ images in 
1986 [9], 2000 [10], 2007 [11]. The cultivated area was 
clipped directly from the 1:100,000-scale land use database 
developed by the Chinese Academy of Sciences (CAS) using 
the ArcGIS software. The observed groundwater levels from 
42 boreholes which were collected by the Gansu Provincial 
Bureau of Hydrology were used to calibrate the model. We set 
the stress period as one month due to the availability of data. 
All the above-mentioned data were obtained from the WestDC 
[12]. 

The study area was discretized to 132 rows and 165 
columns with a uniform cell size 1 × 1 km which were also 
shown in Figure Ⅱ (a) and Figure Ⅱ (b). The boundaries of 
the study area were coincided with earlier studies [13-15] and 
defined by the natural boundaries. A no-flow boundary was 
defined between A-E, because a groundwater divide was 
present at this boundary. E was the outlet of HeiHe River in 
the middle reach which was coincident with the Zhengyi 
Gorge reservoir. The groundwater flow from the mountain to 
the model domain through D-E cannot be exactly quantified. 
No-flow boundary was defined between D-E as the hydraulic 
conductivity in the hard rock was significantly smaller than 
that of the basin sediments according to a previous study [16]. 
Detail settings of the model boundaries and parameters refer to 
[17]. 
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(a) 

 
(b) 

FIGURE II.  (A)THE STUDY AREA AND (B) MODEL DOMAIN 

III. RESULTS AND ANALYSIS 

A. Simulation 

The simulation results of groundwater level at three typical 
boreholes were used to demonstrate and analyze due to the 
relatively large number of boreholes. In the initialization step, 
one hundred (N = 100) particles (samples) were randomly 
generated from normal distribution for each parameter.  The 
simulated groundwater levels were calculated based on each 
set of parameters. The red curve in Figure Ⅲ which indicated 
a decline trend showed the observed groundwater level at each 
borehole. The green curves were the mean value of the 
groundwater level which were calculated from random 
p=articles (the blue curves). In the beginning of the execution, 
the range of the simulated groundwater levels were wide 
because of the random generation of parameters. With the 
operation of the algorithm, the simulated groundwater levels 
converged to the observed value because of the inclusion of 
more observations into PF. The difference between the mean 

value of the simulated and observed groundwater level were 
small which indicated the randomness generating particles. 

 

 

 
FIGURE III.  THE SIMULATED GROUNDWATER LEVELS (BLUE 

CURVES), MEAN VALUE OF SIMULATED GROUNDWATER 
LEVELS (GREEN CURVES) AND OBSERVED GROUNDWATER 
LEVELS (RED CURVES) FOR (A) DAMAN, (B) DIAN-5 AND (C) 

XIAOHE BOREHOLE 
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FIGURE IV.  SUB-ZONES OF HYDRAULIC CONDUCTIVITY. 

 
FIGURE V.  (A~H) CONVERGENCE OF MODEL PARAMETERS IN 

DIFFERENT SUB-ZONES (BLUE CURVES FOR DIFFERENT 
PARTICLES; GREEN CURVES FOR THE MEAN VALUE OF 

PARTICLES; RED LINE FOR THE OPTIMAL VALUE) 

B. Parameters Optimization 

The hydraulic conductivity for the study area was 
conceptualized by separating to 8 sub-zones (shown in Figure 
Ⅳ) based on the hydrogeological map [18]. The hydraulic 
conductivity in each sub-zone is identical. Figure Ⅴ 
demonstrated the distribution of parameters in each time step 
which were optimized by PF. In the beginning, one hundred 
particles were randomly sampled from normal distribution. 
The PF executed once after the observation of the current time 
step became available. The particles were resampled based on 
their importance by SIR. By iterating these procedures, the 
range of particles converged to the optimal value. In Figure Ⅴ, 
one could notice that the elapsed time of each parameter for 
convergence was different. This may be caused by the small 
difference between particle weights. 

IV. CONCLUSIONS 

In this study, Particle Filter was used to optimize the 
parameters in a groundwater model which was constructed for 
the middle reaches of Heihe River Basin, northwestern China. 
The results indicated the Particle Filter as a valuable algorithm 
which was applicable for various non-linear systems. However, 
there are still many issues should be addressed in the future 
work. First, although the SIR improved the problem, particle 
degeneracy still need further research. Second, the accuracy 
and computation cost of PF were determined by the number of 
particles. Therefore, further studies should focus on the 
number of particles which could balance the accuracy and 
computation cost. Furthermore, it is necessary to find an 
approach to detect the speed of convergence and convergence 
itself in the application of PF. 
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