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Abstract—Attitude estimation is used to determine the 
spatial orientation of an object relative to a reference coordinate 
frame, or to provide a method for vector conversion between the 
reference coordinate frame and the target coordinate frame. In 
this paper, after the definitions of 4 kinds of attitude 
representations, we derive the conversion formulas between 
different attitude representations. Then, a complete derivation 
process of the attitude differential equations is provided. In the 
end, we describe the result of a typical experiment, which 
demonstrates the correctness of these conversion formulas. All 
these researches can help understand the meaning of the attitude 
accurately and master the attitude updating algorithm in 
different fields of applications. 
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I. INTRODUCTION 

Attitude estimation is used to determine the spatial 
orientation of an object relative to a reference coordinate frame, 
or to provide a method for vector conversion between the 
reference coordinate frame and the target coordinate frame. It 
has been applicated in many areas such as robot control, 
navigation, and computer vision. Attitude can be expressed in 
four different forms: (1) Euler angles, (2) direction cosine 
matrix, (3) attitude rotation vector, and (4) attitude 
quaternion[1]. Each of these forms is briefly described below. 
Without loss of generality, we choose the navigation frame (for 
simplicity, denoted as n-frame) as the reference coordinate 
frame, and choose the body coordinate frame (denoted as b-
frame) as the target coordinate frame. The navigation frame is a 
local geographic frame which has its origin at the location of 
the navigation system, and axes aligned with the directions of 
north, east and the local vertical(down). The body frame is an 
orthogonal axis set which is aligned with the roll, pitch and 
yaw axes of the vehicle in which the navigation system is 
installed. 

A. Euler Angles 

The transformation from n-frame to b-frame can be carried 
out as 3 consecutive rotations about different axes: (1) rotate 
through angle ψ about n-frame z-axis; (2) rotate through angle 
θ about new y-axis; (3) rotate through angle ϕ about new x-axis, 
where ψ, θ, ϕ are called Euler rotation angles. Euler angles are 
written here in component form as follows: [ϕ, θ, ψ]T. 

B. Direction Cosine Matrix 

The direction cosine matrix is a 3×3 matrix, the columns of 
which represent unit vectors in b-frame axes projected along 
the n-frame axes. Direction cosine matrix is written here in 
component form as follows: 
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A vector defined in b-frame, rb, may be expressed in n-
frame by pre-multiplying the vector by the direction cosine 
matrix as follows: 

 n n b
br C r  (2) 

C. Rotation Vector 

The rotation vector, denoted here by the symbol u, defines 
an axis of rotation and magnitude for rotation about the axis. 
Euler's theorem tells us that the transformation from n-frame to 
b-frame can be effected by a single rotation about an angle 
vector through an angle equal to the vector magnitude. This 
vector is called rotation vector. 

D. Attitude Quaternion 

The attitude quaternion, denoted here by the symbol Q, is a 
4-parameter representation of attitude. Quaternion can be 
expressed in different forms, we use the matrix form and the 
complex number form in this paper: Q = [q0, q1, q2, q3]T = 
q0+iq1+jq2+kq3. The attitude quaternion is corresponding to the 
rotation vector: 

 cos( 2) ( )sin( 2)u u u Q u  (3) 

Where u is the magnitude of rotation vector u. A vector 
defined in b-frame, rb, may be expressed in n-frame as rn using 
the quaternion directly. Treat rb and rn as zero-scalar 
quaternions, then we have: 

 *n b  r Q r Q  (4) 
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Where Q* is the complex conjugate of Q, and the symbol 
  indicates quaternion multiplication[2]. 

II. CONVERSION BETWEEN DIFFERENT ATTITUDE FORMS 

A. Euler Angles to Direction Cosine Matrix[3] 
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B. Euler Angles to Attitude Quaternion[3] 
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C. Direction Cosine Matrix to Euler Angles 
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D. Direction Cosine Matrix to Rotation Vector 

Rotation vector u can rotate n-frame to b-frame. Because 
the rotation is always around u, it's easy to know that the 
coordinates of u in n-frame and b-frame are the same. That is 
to say: un = ub and un = C n 

b ub = C n 
b un. Hence, the vector un is 

one of the eigenvectors of C n 
b , corresponding to the eigenvalue 

1. When C n 
b ≠I3, the dimension of the eigenspace of eigenvalue 

1 is one[4]. Suppose we have obtained a eigenvector v which is 
corresponding to eigenvalue 1, then  

 u u v v  (8) 

Where 

 11 22 332arccos( 1 2)u c c c     (9) 

Hence 

  11 22 332arccos( 1 2)c c c   u v v  (10) 

E. Direction Cosine Matrix to Attitude Quaternion[3] 

For small angular displacements, the attitude quaternion 
may be derived using the following relationships: 
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A more comprehensive algorithm for the extraction of 
attitude quaternion parameters from the direction cosine matrix 
is described by Shepperd[5]. 

F. Rotation Vector to Direction Cosine Matrix[2] 

 2
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G. Rotation Vector to Attitude Quaternion 

  cos 2 sin( 2)u u u Q u  (13) 

H. Attitude Quaternion to Direction Cosine Matrix[2] 
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I. Attitude Quaternion to Rotation Vector 

It can be known from (13) that the vector u is parallel to the 
vector [q1, q2, q3]T, and q0=cos(u/2), hence 

   2 2 2
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J. Brief Summary 

In this section, we provide the conversions between 
different attitude representations, they are: 
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III. DERIVATION OF ATTITUDE DIFFERENTIAL EQUATIONS 

A. Euler Angles Differential Equation 

The following relationship exists between Euler angles [ϕ, θ, 
ψ]T and relative angular rates ωb 

nb: 
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This equation can be rearranged and expressed as follows: 
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(18) may be solved in a strapdown system to update the 
Euler rotations of the body with respect to the navigation frame. 
However, their use is limited since the solution of the roll angle 
and yaw angle become indeterminate when θ=±(π/2)[3]. 

B. Direction Cosine Matrix Differential Equation 

Suppose Rb is a vector that is attached to b-frame, so 
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Project (20) into n-frame, we have 
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Comparing (21) with (22), we have 
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C. Attitude Quaternion Differential Equation 

Suppose Rb is a vector that is attached to b-frame. 
According to (21), we have 
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Differentiate (26) at both ends, and replacing b
bR  with 3 10 , 

we have 
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We have 
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Differentiate (28) at both ends 
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Taking (32) into (30), we get 
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Taking (38) and (39) into (33), we have 
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According to (25) and (40), we have 
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Treat b
nbω  as a zero-scalar quaternion, then we have 
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D. Rotation Vector Differential Equation 

Let f1=cos(u/2),f2=sin(u/2)/u, so 
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Since u is a zero-scalar quaternion, so we have 
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According to the identities of vector, we have 
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E. Brief Summary 

In this section, we provide the complete derivation process 
of the attitude differential equations, especially the Attitude 
Quaternion Differential Equation and Rotation Vector 
Differential Equation. These differential equation may be used 
to update attitude. On how to solve these differential equations, 
readers can refer to [2] and [7]. 

IV. EXPERIMENTS 

In order to verify the correctness of the mutual conversion 
formulas between different attitude representation forms, we 
use MATLAB to conduct experiments. We generate some 
attitude Euler angle vectors randomly, and use these Euler 
angle vectors to calculate attitude representations of other form. 
Then the errors that exist between the representations (obtained 
through different computing processes) of the same attitude 
form can be calculated. For simplicity, we use additive error 
instead of multiplicative error. The experimental results show 
that the errors is less than 10-14, which proves the correctness of 
these conversion formulas. Due to the limited space, we give 
only one typical experiment result in TABLE I. In this table, 
the Eul(Euler angles) was generated randomly, and was used to 
calculate the DCM(direction cosine matrix), then the DCM was 
used to calculate RVT(rotation vector). Other representations 
was calculated similarly. We use additive error instead of 
multiplicative error to show the correctness of the mutual 
conversion formulas. 

TABLE I.  EXPERIMENT RESULT 

Attitude Results 

Eul [-1.4586 , 1.0968 , 2.7269]T 

DCM 

0.4177 ,  0.7641 ,  0.4916

0.1839 ,  0.4587 ,  0.8693

0.8898 ,  0.4536 ,  0.0511

 
 
 


 
 

  
 

RVT [1.3840 , 1.3254 , -1.9312]T 

Quat [0.2089 , 0.4975 , 0.4764 , -0.6942]T 

RVT_1 [1.3840 , 1.3254 , -1.9312]T 

DCM_1 

0.4177 ,  0.7641 ,  0.4916

0.1839 ,  0.4587 ,  0.8693

0.8898 ,  0.4536 ,  0.0511

 
 
 


 
 

  
 

Eul_1 [-1.4586 , 1.0968 , 2.7269]T 

Quat_1 [0.2089 , 0.4975 , 0.4764 , -0.6942]T 

Eul – Eul_1 (1.0e-14)*[0.1332 , -0.0444 , 0.1332]T 

DCM – DCM_1

-0.6661   -0.4441  0.1665

(1.0e-15) * -0.3608      0         0.2220

0.2220   -0.3331   0.6870

 
 
 
  

 

RVT – RVT_1 [0,0,0]T 

Quat – Quat_1 (1.0e-16)*[0.8327 , 0, 0 , 0]T 

V. CONCLUDING REMARKS 

In this paper, we first give the definitions of 4 kinds of 
attitude representations, and then derive the conversion 
formulas between the different attitude representations. Finally, 
we provide the complete derivation process of the attitude 
differential equations. All these researches can help understand 
the meaning of the attitude accurately and master the attitude 
updating algorithm in different fields of application. 
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