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Abstract—This study describes a simple and easy-to-
implement method to determine the pressure drop in industrial 
pipes with non-uniform roughness and helical ribs in the case of 
laminar flow. The effects of the pipe geometrical parameters on 
the laminar flow regime are discussed. The proposed method of 
solution and the accuracy of the numerical calculation are shown 
by the computed results. 
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I. INTRODUCTION 

In the recent years, the scientific research interest in fluid 
flow and heat transfer with an extensive program of 
experiments and numerical simulations is focused both on 
improving the equipment design and on simulation tools and 
techniques [1-3]. Most of the available literature about the 
laminar flow in pipes deals with various practical industrial 
applications offering quantitative data essential for the 
construction of efficient fluid handling systems [4-7]. 

A few experimental studies and numerical reports have 
investigated the roles of surface roughness on the friction 
characteristics and flow regime behavior in industrial pipes [6-8]. 

Numerical methods of sophisticated techniques in 
conjunction with computational power of modern computers 
have led to the theoretical study of complicated flow situations, 
to obtain data required for the practical implementation of the 
results in actual industrial processes [3-5]. 

In the present study, a numerical analysis has been chosen 
since it is a more suitable tool to investigate the pressure drop 
in industrial pipes with non-uniform roughness and helical ribs 
in the case of laminar flow. 

II. COMPUTATIONAL METHOD 

A model of a hydraulic pipe with 3 helical ribs has been 
used (as shown in Figure I, with sections in longitudinal and 
transverse plane). The hydraulic pipe has a ring-centric section, 
with geometrical helical ribs, thin and fair shapes. This solution 
has been chosen in order to simplify the model [6].  

The 3D model [9-15] was obtained by parametric modeling 
with AutoCAD 2017 software [16]. 

 

FIGURE I. SCHEMATIC VIEW OF A HYDRAULIC PIPE WITH 3 
HELICAL RIBS 

Let’s consider the following dimensionless values: 
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with the next limits of variation: 

u = [0..1];  v = [0.01..0.03] ;  w > 0;                (2) 

and the coefficients: 
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The hydraulic diameter can be calculated using the 
following formula [6]: 
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and can be expressed in an equivalent form: 
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The graphs of B(u, w) and C(u, w), for the variations of: u 
= 0..1 and w= 0..100, are shown in Figure II. 

 
                         A)                            B) 

FIGURE II. A) THE GRAPH OF B(U, W); B) THE GRAPH OF C(U, W)  

The dimensionless multiplication coefficient of the 
hydraulic diameter DHk (u, v, w) depends on the three 

variables. The graphs of the coefficient 
DHk in function of two 

parameters and a given value of the third parameter, is shown in 
Figure III to V 6. 

 
　A)                                                          B) 

 
C) 

FIGURE III. THE GRAPH OF KDH(W, U) FOR: A) V = 0; B) V = 0.25; C) 
V = 0.75 

  
A)                                                          B) 

 
C) 

FIGURE IV. THE GRAPH OF KDH(W, V) FOR: A) U = 0; B) U = 0.25; C) 
U = 0.75 

  
A)                                                 B) 

 
C) 

FIGURE V. THE GRAPH OF KDH(V, U) FOR: A) W = 0.01; B) W = 0.25; 
C) W = 0.75 

The Reynolds number can then be calculated using 
equation [6]: 
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            A)                                  B) 

 

 
C) 

FIGURE VI. THE GRAPH OF KRE(U) FOR: A) W = 0.05, V = 0.5; B) W = 
0.25, V = 0.75; C) W = 0.75, V = 1 

The dimensionless multiplier coefficient noted with kRe(u, 
w, v) depends on the three variables. The graphs of the 
coefficient kRe in function of two parameters and a given value 
of the third parameter, is shown in fig. VI 6. 

The Darcy's equation can be used to calculate the uniform 
distributed longitudinally pressure drop [6]:  
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In this relation, the correction coefficient K  is a 

correction coefficient of  value corresponding to a central 
pipe with straight cross ribs:  

1AKK                                (8) 

and   
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The graph of A1 is shown in Figure VII. 

 
 

FIGURE VII. THE GRAPH OF A1(W) 

 
The uniform distributed pressure drop on the pipeline can 

be calculated using the formula [6]: 
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where pk (u, v, w)  depends on the three variables, in the 

range of u = 0..1, v = 0..1 and w = 0..1. 

The graphs of the coefficient pk (u, v, w) in function of 

two parameters and a given value of the third parameter, is 
shown in Figure VIII 6. 
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A)                                                               B) 

 
C) 

FIGURE VIII. THE GRAPH OF pk (u, v, w) FOR: A) U = 0.25; B) V = 
0.75; C) W = 0.05 

 

When the Reynolds number is low (Re  2000) the flow is 
laminar and formula for calculating the  coefficient, for flow 
without thermal phenomena is as follows: 
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From the above formula the non-dimensional multiplier 
coefficient k  is: 
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(12) 
The non-dimensional multiplier coefficient k (u,v,w) 

depends on the three variables. The graphs of the coefficient k 

 in function of two parameters and a given value of the third 
parameter, is shown in Figure IX. 

  
A)                                                              B) 

 
                               C) 

FIGURE IX. THE GRAPH OF K (U,V,W) FOR: A) U = 0.5; B) V = 0.25; C) 
W = 0.75 

Finally, the uniform distributed pressure drop is calculated 
with the following formula: 
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III. NUMERICAL CALCULATION PROGRAM 

Based on the proposed mathematical algorithm a 
computational program was elaborated using Maple 2016 
software [17] as follows:  

 Initial data 

> rho:= ; Q :=; D0:=; d0:=; nu:= ; L:= ; b0 :=; 
 Calculated values 

> u := d0/D0; 
> v := b0/D0; 
> w := d0/L; 
> K_L:=1.36*A1;  
> C := (1+(u/(Pi*w))^2)^.5; 
> B := u*(1+(1/(Pi*w))^2)^.5; 
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>DH:=D0*(1-u)*(2*u*(C-B)/(Pi*w*(1-u))-
6*v/Pi)/(u*(1/C+u/B)/(Pi*w)+3*(1-u)/Pi-6*v/Pi); 
> A1 := 20*w^2+1; 
> d := DH; 
> Rey := evalf(4*Q/(Pi*d*nu)); 
> vm := 4*Q/(Pi*(D0^2-d0^2)); 
> if Rey < 2000 then Lambda0:= 64/Rey end if; 

> if Rey <= 2000 then RC := Regim_de_curgere_*laminar  

end if; 

> Lambda := Lambda0; 

> if RC= Regim_de_curgere_*laminar then Deltap:= 
(1/2)*rho*K_L*Lambda*L*vm^2/DH end if; 

IV. CONCLUSIONS 

The present paper describes an efficient and easy-to-
implement method to determine the pressure drop in industrial 
pipes with non-uniform roughness and helical ribs in the case 
of laminar flow. Identification of the flow regime is achieved in 
order to establish the correct pressure drop and the calculation 
of physical values related to the flow process or the pipe 
dimensional sizes. The results can be used in various fluid flow 
applications by engineers and researchers. 
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