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Abstract—Objective: The target is usually tracked in real 
time at thoracic and abdominal radiotherapy due to the effect of 
respiratory motion, the prediction is necessary to compensate the 
system latency. Method: This paper proposed a prediction 
method based on support vector regression, it dynamically 
updates the training set and achieves the accurate online support 
vector regression. Result: The experiment selected seven 
respiratory motion data, using online model trained and 
predicted. The mean absolute error was 0.30mm.  Conclusion: 
The online accurate support vector regression described 
respiratory motion accurately, and the results with high precision 
can be satisfied in practical application. 
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I. INTRODUCTION  

Most tumor patients have received radiotherapy; there are 
many errors in the radiotherapy process, so precise 
radiotherapy is very important. Precise radiotherapy is aim to 
achieve high accuracy, high dose, high efficacy and low 
damage. Due to the respiratory motion, target position will 
have a certain displacement in the thoracic and abdominal 
radiotherapy, and the tumor target escape into the normal 
tissue, so tracking of the target area is essential[1]. With the 
development of the traditional radiotherapy, respiratory 
control technology, such as the edge expansion of field, gating 
technology, breath-hold, four-dimensional radiotherapy etc. 
has a certain effect, but it still does not meet the need for 
accurate radiotherapy [2]. In which that real-time tumor 
tracking technique is in the free breathing state of the patient, 
the device follows the tumor position, and the tumor 
movement is tracked by adjusting the irradiation field, so that 
the center of the field and the center of the target area are kept 
relatively still. Moreover, the method is a better solution for 
solving the problem of tumor movement at present. Current 
research shows there is a significant correlation between the 
external respiratory signal and the tumor motion. Therefore, it 
is a trend to study the location of tumor in vivo by using in 
vitro respiratory signals [3]. However, there is a few hundred 
milliseconds delay from obtaining tumor location information 
to adjusting the field. Therefore, a model is needed to predict 
the in vitro signal to compensate for the delay of system.  

Researchers have proposed different forecasting methods, 
such as neural network, local regression method, memory 
learning and kernel density estimation [4, 5, 6]. All of these 

methods than no prediction error is small, but has its defects, 
which affect the neural network structure and sample 
complexity, prone to learning or low generalization ability; 
local regression will be affected by the baseline drift in the 
regression analysis, often-think "overfitting" method of 
learning and memory. The pathological nuclear the density 
estimation method in large quantity, it is difficult to meet the 
real-time demand. This paper proposes a prediction algorithm 
of respiratory motion based on support vector regression. This 
method first selects respiratory motion data of a certain length 
for training, and then the regression model is obtained. When 
there is a new data, the regression model calculated the 
corresponding data in vitro[7,8]. Based on this, it can 
dynamically update that train set, update the model online, and 
realize the regression of the precise online support vector. 

II. METHODS 

Human respiratory signal can be regarded as a time series. 
The breath motion signal Y sampled at equal frequency is 
assumed as the input, firstly. The current sampling point is n, 
and λ is the predicted step size. The objectives should be 
calculated ௡ାఒݕ	 through time series ,ଵݕ ௡ݕ… . The essential 
thought of support vector regression applied to prediction of 
time series is, through the training set T={(x୧, y୧), i = 1 ···k},		when the training set meet 	x୧ϵR୒, y୧ϵR,	 the regression 
equation f (x) could be obtained, usually the expression of f (x) 
in the feature space F is  the formula (1): F(x) = W୘ϕ(x) + b																								(1) 

Among them, W is a vector in the feature space F,	ϕ(x)	is the 
mapping of input signal x in the feature space. The W and B in 
the formula could be obtained through solving the 
optimization problem below [9]: 

min୛,ୠ P = 12W୘W+ C෍(ξ୧୩
୧ୀଵ + ξ୧∗) 

s.t. 	y୧ − (W୘ϕ(x) + b) ≤ ε + ξ୧ 	(W୘ϕ(x) + b) − y୧ ≤ ε + ξ୧∗	ξ୧, ξ୧∗ ≥ 0, i = 1 ··· k																					(2) 
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 ξ୧	and	ξ୧∗	are slack variable, that is, the positive and negative 
values of the deviation. The introduction of slack variables is 
used to handle training samples that do not meet the 
conditions: 	|f(u୧) − y୧ା஛| ≤ ε .  C controls the degree of 
punishment for deviations. The optimization criterion of the 
above problem is to punish the data points of the y true value 
and the fitting value f (x) exceeding the error of 	ε .  
The 	α, α^ ∗, η	and	η^ ∗	 are lagrange multiplier, it used to 
programming the Lagrange equation of  formula (2): 

L୔ = 12W୘W+ C෍(ξ୧୩
୧ୀଵ + ξ୧∗) −෍(η୧ξ୧୩

୧ୀଵ + η୧∗ξ୧∗)		 
−෍α୧୩

୧ୀଵ (ε + ξ୧ + y୧ −W୘Φ(x୧) − b) 
−෍α୧∗୩

୧ୀଵ (ε + ξ୧∗ − y୧ +W୘Φ(x୧) + b)	 
s.t.  	α୧,α୧∗, η୧, η୧∗ ≥ 0																		(3) 

The saddle point of Lagrange equation	ܮ௉matched condition; 
hence, the partial derivative of Initial variable b, w, 	ξ, ξ∗is 
equal to zero in the optimization problem, as follows: 

ப୐౦பୠ = ∑ (α୧∗୩୧ୀଵ − α୧) = 0																(4) 

ப୐౦ப୛ = W−∑ (α୧∗୩୧ୀଵ − α୧)Φ(u୧) = 0										(5) 

ப୐౦பஞ = C − α୧ − η୧ = 0																				(6) 

ப୐౦பஞ∗ = C − α୧∗ − η୧∗ = 0																			(7) 

Therefore, the above optimization problem can be transformed 
into its dual optimization problem. 

min஑౟,஑∗ D = 12෍෍Q୧୨୩
୧ୀଵ

୩
୧ୀଵ (α୧ − α୧∗)൫α୨ − α୨∗൯ + ε෍(α୧୩

୧ୀଵ + α୧∗)
−෍y୧୩

୧ୀଵ (α୧ − α୧∗) = 0 

s.t. 0≤ α୧, α୧∗ ≤ C, ∑ (α୧୩୧ୀଵ − α୧∗) = 0,i=1,···k     (8) Q୧୨ = Φ(x୧)୘Φ൫x୨൯ = K൫x୧, x୨൯, K൫x୧, x୨൯	 is the kernel 
function.The regression equations required can be written as: F(x) = ∑ (α୧ − α୧∗)୩୧ୀଵ K൫x୧, x୨൯ + b									(9) 

A. The Kernel Function of Support Vector Machine 

The kernel function Ф(x)denotes the feature of high 
dimensional space derived from the transformation of vector x 

in the original space. Then the classification hyperplane is 
constructed in the new high dimensional feature space. This is 
equivalent to constructing the classification surface in the 
input space. Commutation is a very complex and 
time-consuming operation. In support vector machines, this 
nonlinear transformation is realized by defining appropriate 
kernel functions. We made: K൫ݔ௜, ௝൯ݔ = H(ݔ௜) ∙ H൫ݔ௝൯ K൫ݔ௜, ௝൯ݔ Instead of the point product of the optimal 
classification plane ௜்ݔ ∙ ௝ݔ , H is called the spatial 
transformation function. The function is equivalent to 
transforming the original feature space into a new feature 
space. The kernel function realizes the transformation from the 
low-dimensional space to the high-dimensional space. At the 
same time, the computation of support vector regression is 
simplified, the concrete form of transformation function is not 
needed in the whole process, and the subsequent computation 
is realized by kernel function. 

Kernel functions are mainly of the following types. 

(1) Linear kernel functionK(x, y) = ,ݔ〉  〈ݕ
(2)Polynomial kernel function K(x, y) = ,ݔ〉) 〈ݕ + 1)ఙ 

(3)Gaussian Radial basis function 

K(x, y) = exp	(−‖ݔ − ଶߪଶଶ2‖ݕ ) 
(4)Exponential Radial basis function 

K(x, y) = exp	(−‖ݔ − ଶߪଵଶ2‖ݕ ) 
(5)Sigmoid kernel function K(x, y) = tanh	(ݔ〉ߪ, 〈ݕ + ߬) 
(6)The kernel function constructed by linear combination 

of kernel basis functions. This kernel function preserves the 
characteristics of each original kernel function and expresses 
the influence of different basis kernel functions through 
different weights.  

σ and τ are kernel function parameters. The selection of 
kernel function and its parameters is very important in the 
implementation of support vector machine (SVM) algorithm. 

B. Model Parameter Selection 

Epsilon insensitive loss coefficient, penalty factor C have a 
great influence on learning ability and generalization ability of 
support vector regression , so determining the model 
parameters is also an important part of the SVR, and its value 
is related to the training sample. The penalty function C 
determines the complexity and deviation of the model, which 
is greater than the acceptance of ε in the optimization process. 
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That is, if the penalty function C is too large (infinity), the 
objective in the optimization process is to minimize the 
empirical risk. The insensitive loss coefficient ε controls the 
width of the insensitive region, which is used to fit the training 
data, and affects the number of support vectors to construct the 
regression equation. Large insensitive loss coefficient ε will 
lead to fewer support vectors, and lower complexity regression 
estimation can be obtained. Therefore, we can see that 
insensitive loss coefficient ε and penalty coefficient C have 
influence on the complexity of regression model. It just 
changes in the opposite direction. 

There are several ways to select the parameters of support 
vector regression: 1) The user chooses according to experience 
or prior knowledge. 2) The optimal insensitive loss coefficient 
ε is proportional to the noise level of the sample. 3) The 
penalty function C has the same range as the output variable. 4) 
The loss function based on empirical risk in support vector 
regression is related to the special type of additive noise in the 
regression equation. 

In this study, the insensitive loss coefficient ε is directly 
proportional to the noise level of the input variable. The 
determination of ε depends on the noise level of the training 
sample and the number of the training sample, and the noise 
level of the training data is known or can be estimated. 

III. RESULT 

Due to laboratory constraints, the experimental data used 
in this paper are free data made public by the Institute of 
Robotics and Cognitive Systems, University of Lubeck, 
Germany. The support vector regression is evaluated by seven 
sample respiratory motion data. The sampling frequency of the 
data is 20Hz, when the respiratory motion series is 
F=[	Fଵ				Fଶ				Fଷ	 ··· Fୣ୬ୢ	], the data collected 10 seconds(about 
200) conducted as training sets. Experimental results showed 
that the training set is decomposed into 4-sample label as a set 
of input S, the precision of the model is high and the time cost 
is not increase obviously. The model is trained with expected 
respiratory movement series T as an output corresponding to S, 
and the mapping relationship is as follows: 

ܵ = ൦ → ௘௡ௗିఒ൪ܨ	௘௡ௗିఒିଵܨ		௘௡ௗିఒିଶܨ	௘௡ௗିఒିଷܨ⋮																⋮															⋮														⋮ହܨ													ସܨ													ଷܨ											ଶܨସܨ													ଷܨ														ଶܨ											ଵܨ T = ሾFସା஛	Fହା஛ 	 ··· 	Fୣ୬ୢሿ 
At the same time, model parameter selection is referenced in 
published literature. [10]   

The impact of the kernel function on the model 
performance is shown in Figure 1;when the penalty function C, 
the insensitive loss coefficient ε is invariant, the effect of 
kernel function parameter on RMSE is shown.  

Different kernel functions show different changes with the 
change of parameters. Linear kernel functions are also 
commonly used. Because it is not affected by kernel function 
parameters, it is not to be compared here. By comparing and 
analyzing, we can see that when the parameters of 

GAUSSIAN RBF kernel function are chosen in a large range, 
the RMSE can all have ideal values; the comprehensive 
stability and the algorithm complexity are all good, so the 
GAUSSIANRBF kernel is chosen in this paper. The results 
showed that the Gauss kernel function is relatively stable.  

 
FIGURE I. THE INFLUENCE OF KERNEL FUNCTION 

Figure 2 shows the influence of the change of the 
parameters of the kernel function on the model performance in 
support vector regression. From figure 2, we can see that when 
the penalty function C remains unchanged, the kernel function 
parameter changes, the change trend of the algorithm 
evaluation index RMSE is first decreasing and then rising, but 
the change of penalty function C is not very obvious when the 
kernel function parameter is invariant. From the above 
analysis, we can get that: as the AOSVR regression model, 
when the insensitive loss function ε is invariant, changing the 
penalty function C has little effect on the RMSE, but changing 
the parameter σ of the kernel function has a certain effect on 
the value of RMSE.  

 
FIGURE II. THE INFLUENCE OF KERNEL FUNCTION PARAMETERS 

ON PERFORMANCE OF ALGORITHM 

IV. CONCLUSION 

Support vector regression (SVM) is prominent in solving 
nonlinear regression. Respiratory motion is a typical nonlinear 
time series, in order to accurately fit its motion characteristics 
accurately, to choose the proper mapping relationship is 
necessary. Support vector regression (SVM) is trained by 
selecting a certain historical data, to get the relation between 
input and output. When new input is obtained, the 
corresponding output is calculated by model. The respiratory 
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motion series is divided into several vectors as the feature 
vectors, and the vectors are used as the input of support vector 
regression. The mapping combined historical information fit 
the current output accurately. However, time-consuming still is 
the defect of support vector regression, and then the 
acceleration method to make the algorithm more suitable for 
practical applications will be a topic of the future work. 
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