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Abstract—To improve the computer-assisted diagnosis and 
decision in dentistry, we tested a new method combining Hu 
moment invariant (HMI) method and extreme learning machine 
(ELM) to implement the teeth classification in cross-section image 
of Cone Beam Computed Tomography (CBCT). 160 images were 
analyzed and 4 categories were recognized. The results showed the 
sensitivities of incisors, canine, premolar, and molars were 78.25± 
6.02%, 78.00± 5.99%, 79.25± 7.91%, and 78.75± 5.17%, better 
than ANN statistical-significantly. 
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learning machine 

I. INTRODUCTION 

With the progress of computer technology, artificial 
intelligence has penetrated into every field of knowledge. In 
medicine, machine learning allows medical workers to process 
huge image data and recognize quantitative features or areas, 
which provides reference and theory for diagnosis, and improve 
diagnosis efficiency, accuracy and repeatability. Artificial 
intelligence may help us in prognosticating the disease and 
guiding in clinical diagnosis and treatment. 

Teeth is an important organ in dentistry. According to the 
morphological function of the teeth, it can be divided into four 
categories: incisor (incisor, incisor), canine, premolar (first 
premolar, second premolar), molar (first molar, second molar, 
Third molars). Those different morphological characteristics 
reflect in the imaging data, such as Cone Beam Computed 
Tomography (CBCT), which can observe the tooth shape, size, 
location and the relationship with the adjacent teeth at any angle, 
with low radiation and high spatial resolution [1]. Compared 
with any other imaging methods, CBCT produces high-quality 
images for hard tissues, especially dental tissues [2]. Thus, 
CBCT achieves ubiquity in the diagnosis of oral diseases. 

Teeth classification is an important component in the 
computer-assisted diagnosis and decision. In order to recognize 
tooth classification, researchers have proposed various machine 
learning algorithms. Yoke-San introduced a classification 
system based on the iterative closest point algorithm (ICP) to 
handle tooth crown segmented from scanned dental casts and 
entire single tooth reconstructed from CBCT images [3]. Al-
sherif identified 622 bitewing dental images by using 
Orthogonal Locality Preserving Projection (OLPP) algorithm to 

assign an initial class, then number the teeth based on teeth 
neighborhood rules [4]. Pushparaj used Support Vector 
Machine to classify the teeth and utilized template matching 
algorithm to assign teeth number by panoramic images [5]. 
Tangel presented a fuzzy inference system for dental 
classification by 78 periapical radiographs, analyzed teeth 
based on multiple criteria such as area/perimeter ratio and 
width/height ratio [6]. 

In this study, we tested a new method combining Hu 
moment invariant (HMI) method and extreme learning machine 
(ELM) to implement the teeth classification in cross-section 
image of CBCT. This paper follows the standard of computer 
vision [7-9] and medical image processing [10-12]. Four 
categories are recognized: central incisor, lateral incisor, canine 
and premolar. 

II. METHODOLOGY 

A. Hu Moment Invariant 

Currently there are numerous feature extraction methods, 
for example, Fourier transform [13-16], wavelet analysis [17-
19], and so on. Moment invariant was proposed by Hu in 1962, 
with invariant character for translation, rotation and scale, and 
was widely applied in pattern recognition. F (x, y) is a piecewise 
continuous therefore bounded function, whose two-
dimensional (p + q) moment is defined as: 

( , ) , , 0,1, 2p q
pqM x y f x y dxdy p q 

       (1) 

The double moment sequence (Mpq) is uniquely determined 
by f(x,y) And vice versa. (p + q) order center moments are 
defined as: 

1 1( ) ( ) ( , )p q
pqC x x y y f x y dxdy 

       (2) 

The components of the centroid are as follows: 
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If ƒ(x, y) is a digital image, then we have integrals instead 
of sums, the Hu moments(1) and corresponding center 
moments(2) becomes: 

( , )p q
pqM x y f x y            (5) 

1 1( ) ( ) ( , )p q
pqC x x y y f x y           (6) 

The center moments are pqC
shift invariant, in order to obtain 

the scale invariance, we normalize the central moments as: 
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Hu applied the algebraic invariant theory to the above scale 
invariants and constructed the following seven invariants, 
which were linear combinations of the second and third order 
central moments: 

1 20 02I N N                 (8) 
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I5=(N30-3N12) (N30+N12)[(N30+N12)2−3(N21+N03)2]+(3N21−N03)
(N21+N03)[3(N30+3N12)2−(N21+N03)2]      (12) 

2 2
6 20 02 30 12 21 03 11 30 12 21 03( )[( ) ( ) ] 4 ( )( )I N N N N N N N N N N N         (13) 

I7=(3N21−N03)(N30+N12)[(N30+N12)2−3(N21+N03)2]−(N30−3N12)
(N21+N03)[3(N30+N12)2−(N21+N03)2       (14) 

Generally, These Hu moment invariants (I1~I7) are the 
invariant characteristics of the target. 

B. Extreme Learning Machine 

ELM is a single-hidden layer feedforward neural network 
(SLFNs) proposed by Huang et al. The network is constituted 
of input layer, hidden layer and output layer [20-22]. If the 
activation functions in the hidden layer are infinitely 
differentiable, the input weights and hidden layer biases can be 
randomly assigned, ELMs can be simply considered as a linear 
system. ELM has the fast learning speed and the universal 
approximation ability, which can approximate any continuous 
function. Scholars have proven that ELM outperforms peer 
classifiers, such as multilayer perceptron [23-26], support 
vector machine [27-29], fuzzy SVM [30-32], etc. 

Given N different set of samples (Ii, Di), where 

1 2[ , ,..., ]T n
i i i inI I I I R   represents input data, and 

1 2[ , ,..., ]T m
i i i inD D D D R   represents desired output. 

Standard SLFNs with M hidden nodes and activation function 
f(X) are mathematically modeled as 

1 1( ) ( ) , 1,2,...M M
i i i j i i i j j iV f I V f W I b O i N        (15) 

Where 1 2[ , ,..., ]T
i i i inW W W W  is the weight vector 

connecting the i-th hidden node and the output nodes, 

1 2[ , ,..., ]T
i i i inV V V V  is he weight vector connecting the i-th 

hidden node and the output nodes, bi is the threshold of the i-th 
hidden node, WiIj is the inner product of Wi and Ij, Oj is the 
actual output. 

If the activation function f(x) can approximate these N 
samples with zero error with M hidden nodes: 

1 | | 0M
j j jO D               (16) 

Then, the exist Wi, Vi and bi satisfy equation as: 
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I i i j i jV f W I b D j N        (17) 

The above equations can be written as matrices: 

HV=D                   (18) 
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If the hidden layer output matrix of the neural network(H) 
and desired output (D) are known, the learning process of the 
ELM is to obtain the weight vector of the output(V) according 
to (11). 

C. K-fold Cross Validation 

In case of insufficient sample size, the k-fold cross-
validation can make full use of the data set to test the algorithm 
effect. In this study, we divided the data set into 10 equal sized 
subsamples randomly (k=10). Of the 10 subsamples, we 
selected one as the testing set and remained the 9 subsamples as 
the training set. The cross-validation process was repeated 10 
times, and each subsample was used once as the testing set. 
Finally, the results of 10 experiments (mean squared error, MSE) 
were averaged to produce a single estimation: 
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We reported the mean and standard deviation of sensitivity 
of all four classes. The higher the value is, the better the 
performance is. 

III. DATASET 

In our experiment, the CBCT images of teeth are used for 
reducing the damage to the human body in the process of 
imaging. In total, we have a 160-image dataset, which contains 
40 incisors, 40 canines, 40 premolars, and 40 molars. Figure I 
shows the samples of our dataset. 

 
FIGURE I. SAMPLES OF OUR DATASET 

IV. RESULTS AND DISCUSSIONS 

The 10 repetitions of 10-fold cross validation of our 
HMI_ELM method was shown in Table I. Here the sensitivities 
of incisors, canine, premolar, and molars are 78.25± 6.02%, 
78.00± 5.99%, 79.25± 7.91%, and 78.75± 5.17%. 

TABLE I. CROSS VALIDATION RESULTS OF OUR METHOD 

Run Incisor Canine Premolar Molar 
R1 72.50 75.00 82.50 82.50 
R2 72.50 70.00 82.50 77.50 
R3 82.50 85.00 60.00 85.00 
R4 70.00 80.00 87.50 75.00 
R5 90.00 72.50 75.00 85.00 
R6 80.00 85.00 77.50 77.50 
R7 80.00 80.00 80.00 72.50 
R8 77.50 77.50 82.50 75.00 
R9 75.00 85.00 77.50 85.00 
R10 82.50 70.00 87.50 72.50 

Average 78.25± 6.02 78.00± 5.99 79.25± 7.91 78.75± 5.17

Next, we compared our ELM method with artificial neural 
network (ANN) method [33]. The ANN results were listed in 
Table II. We can observe the ANN [33] method achieved 
sensitivities results of the four classes as 76.00± 3.94%, 75.00± 
5.53%, 76.00± 6.89%, and 75.25± 2.49%, respectively. 

TABLE II. CROSS VALIDATION RESULTS OF ANN 

Run Incisor Canine Premolar Molar 
R1 72.50 80.00 72.50 75.00 
R2 77.50 75.00 82.50 72.50 
R3 80.00 77.50 75.00 75.00 
R4 77.50 65.00 85.00 75.00 
R5 80.00 67.50 85.00 72.50 
R6 77.50 77.50 62.50 80.00 
R7 67.50 77.50 75.00 77.50 
R8 77.50 80.00 72.50 75.00 
R9 72.50 80.00 77.50 72.50 
R10 77.50 70.00 72.50 77.50 

Average 76.00± 3.94 75.00± 5.53 76.00± 6.89 75.25± 2.49

A comparison plot was shown below for better visual 
quality in Figure II. It is clear observed that this proposed 
method achieved better result than ANN [33] statistical-
significantly. This again shows the effectiveness of our 
proposed method, and the superiority of our method to 
traditional ANN method. 

 
FIGURE II. COMPARISON RESULT 

V. CONCLUSION 

In this study, a novel approach for classification of CBCT 
teeth images combining Hu moment invariant (HMI) method 
and extreme learning machine (ELM) had been proposed and 
implemented. This method achieved higher classification 
percentage than ANN method. In the future, we may apply our 
method to identify other diseases, including Alzheimer’s 
disease [34], alcoholism detection [35, 36], etc. 
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