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Abstract—The location-routing problem under emergency 
with simultaneous relief materials delivery and victim evacuation 
is studied and modeled. The number of victims is assumed 
ambiguous, risk preference of the decision maker is considered, 
and mixed transportation of relief and victims is allowed. A 
chance-constrained programming model is proposed based on the 
fuzzy credibility theory, and a genetic algorithm is designed to 
solve the problem. 
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I. INTRODUCTION  

It is an important issue in both academic research and 
practical management to find effective ways to reduce the 
consequence of the disaster, such as the earthquake. Usually 
after the strike of an earthquake, efforts are mainly focused on 
rescuing the injured people and dispatching reliefs to the 
affected areas from the Emergency Logistics Centers (ELCs). 
Hence how to determine the proper location for an ELC and 
how to plan the routes for the vehicles of relief delivery 
become essential and urgent. The facility location problem 
(FLP) and vehicle routing problem (VRP) have been studied 
for many years. Since the number and locations of ELCs 
directly influence the vehicle routing while the efficient vehicle 
routing strategies also have some requirements on the location 
of facilities, it will take advantages sometimes to consider FLP 
and VRP jointly. Thus the location routing problem (LRP) has 
aroused more and more attentions recently [1]. To increase the 
efficiency of transportation, simultaneous pickup and delivery 
(SPD) are usually encouraged, and the relative problems have 
received great concerns, see Wang et al [2].  

The severity of disaster effects is usually unknown in the 
initial period, hence decisions have to be made under 
uncertainty. Fuzzy set theory has been widely adopted to 
process the uncertain information in logistics management, 
such as the uncertain demand in VRP [3], and the chance-
constrained programming model has been frequently employed 
(see [4][5]). Previously, fuzzy possibility was often adopted to 
deal with fuzzy demand, but it has no self-dual property. Liu 
introduced the concept of fuzzy credibility in order to 
overcome this shortage [6], and was adopted in this paper.  

The rest of the paper is organized as follows. The model for 
location-routing problem with simultaneous pickup and 
delivery (LRPSPD) under uncertainty was formulated in 
Section 2, which considered the delivery of emergency supplies 

and evacuation of victims simultaneously. In Section 3, a 
genetic algorithm was designed. Then numerical experiments 
were conducted and the results were analyzed in Section 4. 
Finally in Section 5, some conclusions were summarized. 

II. FUZZY LRPSPD MODEL  

A. Problem Description  

First, the problem considered in this paper has the following 
features. There are some warehouses separately located and can 
be used as Emergency Logistics Centers (ELCs) in case of 
occurring of an emergent event. And some shelters or hospitals 
are also distributed in this area and available for receiving 
victims. When an earthquake occurs, some areas will be 
affected and need emergent rescue, known as demand nodes.  

Decision makers have to decide which warehouses will be 
selected as ELCs and how to distribute the reliefs to the 
affected areas based on the priority in severity, required due 
time, decision makers’ preferences, etc.. Besides, victims, 
especially the injured people, in the affected areas have to be 
transferred to proper shelters or hospitals as well. We assume 
that the victims can be picked up by the same vehicle which 
delivers reliefs. The number of victims is represented with a 
triangle fuzzy number (α, β, γ). The goal is to determine the 
quantity and locations of ELCs, and to find the best routes for 
delivering reliefs to the affected areas meanwhile transferring 
the victims to hospitals, in minimizing the total cost. 

B. Mathematical Model 

Some assumptions are made as following: (1) each demand 
node is visited exactly once by a vehicle, and the service time is 
ignored; (2) the victims can be carried on the same vehicle 
together with reliefs; (3) a vehicle will start from an ELC and 
stop at a hospital without going back to the ELC after visiting 
the final demand node on the route; (4) it is allowable that more 
than one vehicle start from an ELC; (5) the total load of a 
vehicle (including reliefs and victims) cannot exceed its 
capacity; (6) no restriction on the capacity of hospital. 

Notations are defined as follows. 

1) Sets: 
P Set of all potential ELCs P= {p| p =1, 2, …, P} 

A Set of demand nodes A= {i| i=1, 2, …, N} 

H Set of hospitals  H= {h| h =1, 2, …, H} 
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K Set of vehicles  K= {k| k =1, 2, …, K} 

2) Parameters: 
fp Setup cost for employing the pth warehouse as an 

ELC 

Sp  Supply of the pth warehouse as an ELC 

CVk Capacity of vehicle k 

ck Unit transportation cost (per kilometer) of vehicle k 

wk Fixed cost for vehicle k if employed 

dij Distance between node i and j 

W Capacity occupation by a victim 

tij Travel time from node i to j 

Tj Arrival time of a vehicle at node j, where Tj=0jP 

Tmax The allowable latest arrival time for each demand 
node 

Dj Demand for relief materials at node j, jA 

jb  Quantity of victims at node j estimated in fuzzy 

number jb =(αj, βj, γj) 

kjU  Remaining capacity of vehicle k after visiting node j, 

jA 

DPI  Decision maker’s preference index, DPI[0,1] 

M  A big enough positive number 

3) Decision variables  
yp  1 if warehouse p is selected as ELC; 0 otherwise 

xijk  1 if vehicle k travels from node i to j; 0 otherwise 

zpk 1 if vehicle k is assigned to ELC p; 0 otherwise 

The problem can be formulated with the following 
mathematical model: 
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In above model, the objective to be minimized includes the 
setup cost for ELCs, transportation cost, as well as the fixed 
cost for vehicles. Constraint (2) and (3) indicate that vehicles 
can be assigned to warehouse p only when it is selected as an 
ELC, while constraint (4) states that a vehicle can leave ELC p 
only when assigned to it. Constraint (5) is the flow 
conservation equation. Constraint (6) specifies that vehicles 
will finally stop at hospitals. Constraint (7) restricts that each 
demand node is visited once and only once. Constraint (8) is to 
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eliminate subtours from the solution. Constraint (9) represents 
the visiting sequence of the nodes in terms of arrival times. 
Constraint (10) guarantees that the arrival time at each demand 
node cannot be later than the specified due time. Constraint (11) 
and (12) are common capacity restrictions, while constraint (13) 
explains that the service capability of picking up victims 
depends on its remaining capacity along with the tour. 
Considering that the estimated quantity of victims is a fuzzy 
number, the remaining capacity of a vehicle on its tour is 
obviously a fuzzy number as well. The initial value for  

( )PkjU j  is a non-fuzzy number which is calculated by 

P A A
kp k ijk j

i j

U CV x D
  
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. Constraint (14) reflects the risk 

preference of the decision maker in terms of fuzzy credibility.  

Now we introduce the calculation for fuzzy credibility in 
constraint (14). Suppose that the route for vehicle k is (p, j1, 
j2…, jk, h), where p is the ELC as its start, h is the hospital at 
which it stops, and j1, …, jk are demand nodes it serves. The 
remaining capacity of vehicle k after visiting ji can be 
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Based on the theory about fuzzy credibility [9], the 

following expression of  Cr{
ikjU ≥0}can be derived 

1

1

1

1

1 0

( 2 )

0

2 ( )

{ 0}

( )

0

2 ( )

0 0

i

i

i ii

i i

i ii

i

j

j

kp j j
j j

j jj

j
j j

kj j

kp j
j j

j jj

j j

j

j

j j

j

j

if

U D W W

if

W W

Cr U

U D W

if

W W

if




 



 









 











     
  
   
  
   
  
   

 














 (18) 

Cr is a measure taking value between 0 and 1, which 
reflects the possibility to complete the mission. When Cr=0 , in 
this model, the vehicle is regarded as unable to serve the next 
demand node, while Cr=1 means that it is undoubtedly capable 
to serve the demand node. The concept of decision maker’s 
preference index (DPI) [7] is also adopted in the paper, which 
expresses the decision maker’s preference towards risk. If the 
decision maker tends toward risk seeking, he will choose a 
lower DPI value; while he will choose a larger DPI value if he 
is inclined to be conservative.  

III. GENETIC ALGORITHM  

A kind of genetic algorithm is proposed to solve the 
problem in this section. The main features are designed as 
follows. 

A. Encoding 

The chromosome is composed of four segments of integers. 
The first segment includes N (the number of demand nodes) 
genes of integers between 1 and K (the number of vehicles), 
indicating the index of the vehicles assigned to demand nodes. 
The second segment is composed of K bits of integers between 
1 and P (the number of ELCs), with the ith gene representing 
the index of ELC where the ith vehicle departs. The third 
segment, consisting of N genes, provides the routes of the 
vehicles which appear in the first segment, and the last segment 
of K numbers tells which hospital a vehicle will finally go to. 
The example in Figure 1 illustrates the encoding process.  

Suppose there are 10 demand nodes, 5 vehicles, 3 ELCs, 
and 2 hospitals. It can be found from the first segment that 
number 5 appears at the 1st, 3rd, and 9th position, which implies 
that the demand nodes at the 1st, 3rd, and 9th position of the third 
segment are assigned to the 5th vehicle, i.e. demand node 9, 4, 
and 6 will be served by vehicle 5 in this sequence. The value of 
the 5th gene on the second segment tells us that vehicle 5 will 
start from ELC 2. The 5th bit of the last segment is 1, referring 
to that vehicle 5 will stop at hospital 1 at last. The number 1 
does not appear in the first segment, implying that vehicle 1 is 
not assigned to any task; so it will not stop at any hospital (0 is 
assigned to the 1st position of the last segment). 

FIGURE I.  AN ENCODED CHROMOSOME 

B. Selection, Crossover and Mutation 

Roulette wheel scheme is adopted for selection, and the 
probability of the chromosome being selected is proportional to 
its fitness value, i.e. the reciprocal of the objective value. To 
improve the efficiency of the algorithm, different crossover and 
mutation schemes are designed according to the nature of 
different segment. Traditional two-point crossover and single-
point mutation are employed for segment 1 and 2. To keep the 
feasibility of the solution, an order-based crossover and the 
reversal mutation are adopted for segment 3. The simple single-
point crossover and mutation are used for segment 4.  

C. Initialization and Termination 

The initial population is randomly generated with all 
segments from their allowable ranges. The maximal 
evolutionary generations U is set as the ending condition. 

IV. NUMERCIAL EXPERIMENT  

The locations of 4 candidate ELCs, 25 demand nodes, and 2 
hospitals are randomly generated in the area of square 100×100.  
The details can be found in Table 1 and Table 2. To simplify 
the experiment, we assume that there are 7 homogeneous 
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vehicles, with velocity vk=60, capacity CVk=24, fixed cost 
wk=300, unit transportation cost ck=2. The volume of a victim 
and unit commodity is 0.9 and 0.05, respectively. The 
allowable latest arrival time is 240. The parameters for GA are 
set as follows: population size Pop = 300, crossover rate Pc = 
0.8, mutation rate Pm = 0.3, maximum generations U = 500. 

The computational results are listed in Table 3, by changing 
DPI from 0.5 to 1. It is easy to find that the total cost 
significantly increases with the increase of DPI. When DPI 
takes the value of 0.5 or 0.7, the number of vehicles is 6; while 
it increases to 7 when DPI becomes to 0.9 or 1. 

TABLE I.  INFORMATION ABOUT AFFECTED AREAS (DEMAND NODES) 

Node Location Demand Victims Node Location Demand Victims Node Location Demand Victims 

1 (20,85) 120 (1,4,7) 10 (18,80) 100 (4,6,8) 19 (4,18) 100 (5,6,7) 

2 (5,45) 100 (3,5,7) 11 (25,30) 86 (3,5,7) 20 (26,35) 90 (2,4,6) 

3 (42,15) 84 (4,5,6) 12 (15,10) 143 (6,7,8) 21 (80,90) 100 (2,4,6) 

4 (38,5) 165 (4,6,8) 13 (45,65) 78 (4,5,6) 22 (72,43) 113 (3,4,5) 

5 (95,35) 90 (5,6,7) 14 (65,20) 80 (4,5,6) 23 (85,10) 78 (3,4,5) 

6 (85,25) 82 (4,6,8) 15 (31,52) 90 (4,6,8) 24 (93,20) 70 (1,3,5) 

7 (62,80) 60 (2,3,4) 16 (2,60) 52 (2,4,6) 25 (90,90) 130 (3,5,7) 

8 (58,75) 150 (8,9,10) 17 (5,5) 117 (3,5,7)     

9 (50,50) 182 (2,5,8) 18 (57,29) 138 (5,6,7)     

TABLE II.  INFORMATION ABOUT POTENTIAL ELCS AND 
HOSPITALS 

 
ELC Hospital 

1 2 3 4 1 2 

Locati
on 

(40,5) (90,70) (50,30) (20,50) (62,13) (12,60)

Setup 
cost 

2000 2500 2500 3000   

Capaci
ty 

1500 1700 2000 2000   

TABLE III.  COMPUTATIONAL RESULTS 

DPI ELC Nv Cost Routes 

0.5 1, 2 6 7645.2 
1-3-12-17-19-2       2-21-8-1-10-2 
2-5-24-23-6-22-1    1-11-20-18-14-1 
2-25-7-13-16-2-2    1-4-9-15-2 

0.7 1, 2 6 7692.4 
1-12-17-19-2-2       2-7-18-1-10-16-2 
2-25-21-8-13-2       2-22-5-6-24-23-1 
1-3-4-11-20-2         1-15-9-14-1 

0.9 1, 2 7 8043.2 
2-25-21-9-1 1-18-15-2-2 1-4-11-20-2
2-7-1-10-16-2       1-12-17-19-3-1 
2-5-6-24-23-1       2-8-13-22-14-1 

1 1, 3 7 8192.0 
1-4-12-11-2  3-8-1-10-2   3-15-2-16-2
3-14-5-24-23-1     3-22-21-25-6-1 
3-18-9-7-13-2       1-3-20-17-19-2 

Nv. Number of operating vehicles 

The smaller DPI means that the decision maker prefers to 
reduce total cost and trying to make full use of vehicles by 
taking the risk of insufficient transportation capability, so the 
number of vehicles and the value of objective function are 
smaller but the possibility of failing to convey all the victims 
becomes bigger. In contrast, larger DPIs are characterized by 
lower utilization of vehicle capacity but higher service 
quality. Decision makers can make the tradeoff between risk 
and cost according to their preferences. 

V. CONCLUSIONS 

A LRPSPD model was developed in this paper with 
simultaneous relief delivery and victim evacuation. 
Considering the nature of information ambiguity at the early 
stage of the earthquake, fuzzy demand of victims was 
introduced and the chance-constrained method based on 
fuzzy credibility theory was adopted. In addition, decision 
maker’s preference to the risk is also an important concern in 
our model. A genetic algorithm was designed for solving, 
and the results from a numerical example validated the 
effectiveness of the proposed model. 
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