
A Moving Objects Index Method Integrating
GeoHash and Quadtree

Ya Ban1, Rui Wang1, Hongjing Liu1, Jing Yuan1, Hao Luo1, Fuli Yang2, Ling Yu1 and Xinping Xu1
1Chongqing Academy of Metrology and Quality Inspection, Chongqing 401120, China

2State Grid of Chongqing Electric Power Co. Electric Power Research Institute, Chongqing 401123, China

Abstract—To take into account of frequent update, efficiency
and query capability, a new full-time index structure was proposed
with help of one-to-one match between Quad-tree nodes and
GeoHash codes, named GQ-tree, which supported moving objects
updating frequently. An efficient index update algorithm based on
GeoHash encoding was proposed to improved efficiency.
Algorithms of efficient nearest neighbor query, spatiotemporal
query, and continuous query were proposed with the help of Hash
table, linked list and GeoHash of moving object position.
Experimental results prove GQ-tree is better than existing
methods in terms of index update, spatiotemporal query and so on.

Keywords—GeoHash; bottom-up update; Quadtree; nearest
neighbor query; moving object index

I. INTRODUCTION

Research of moving object database was mainly focused on:
representation and modeling of moving object, moving object
index, query technologies and privacy protection. As one of the
key technologies of moving object, index played an important
role in spatiotemporal query[1].The research of moving object
spatio-temporal index can be divided into two kinds: One is the
index of the historical trajectory of the moving object[2],such as
RT-Tree[3],STR-tree[4],HR-tree[5]; the other is the index of the
current and future position of the moving object, such as PMR-
quadtree[6],TPR-tree[7],TPR*-tree[8],VCI R-tree[9], ATPR-
tree[10],STRIPES-tree[11], improved Quadtree [12], associated
tree[13].In particular, the study on the full-temporal indexing of
moving objects is less successful in academia [14,15,16].

Location of moving objects location update frequently,
which results in dramatic changes in index structure [17]. Due to
inherent top-down update model, methods above had a large I/O
cost, and did not support nearest neighbors query. GeoHash can
transform two-dimensional coordinates of latitude and longitude
into a code, as the world's unique identification to express points.
We can reuse Hash table, B-tree to query data at one-
dimensional space by GeoHash, and it is more simple and
efficiency than two-dimensional index. Beside, GeoHash can
effectively prevent geographic information leakage.

To solve the problems, we focus on reducing the cost of
various queries and frequent updates. This paper presents an
efficient index for moving objects, which integrates Quad-tree,
GeoHash and linked list, named GQ-tree. Efficient index update
algorithm based on GeoHash (GEIU) is proposed.

II. GQ-TREE AND ALGORITHM

A. Principle

GQ-tree divides space based on the similar zoning rules
between GeoHash and Quad-tree, and there is a consistent one-
to-one match between Quad-tree nodes and GeoHash codes, the
principle as shown in Figure Ⅰ. Quadtree leaf nodes, brothers
and parent node can be quickly search by GeoHash, and no need
frequent access to the Quadtree. Moving object locations are
stored in forms of GeoHash encode, not only for index update,
but also indicating location ,and helping to protect privacy.
GeoHash encoding length controls region area, the shorter the
encoding, the larger the area. Adjacent locations have the same
prefix, which has obvious advantages in solving problem of
nearest neighbors query.

FIGURE I. PRINCIPLE

B. GQ-Tree Index Structure

GQ-tree index structure as shown in Figure Ⅱ. In order to
store full-time trajectory data of moving objects, GQ-tree
consists of two parts: one is an improved Quadtree for storing
present and future trajectories of moving objects; the two is hash
table and linked list to store historical trajectory data.

According to BUU [18], GeoHash efficient index update
(GEIU) algorithm is proposed in this paper. The key issues to
performance of GEIU are brother’s leaf nodes search algorithm
and reverse backtracking search algorithm. We introduce a
direct access table used to point to the Quadtree nodes, so we can
access Quadtree nodes directly without extra disk I/O. At the
upper-left corner is the direct access table. GeoHash in the table
is leaf node code, through GeoHash code, leaf node contained
moving object can be found, at the same time, through the

385Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Intelligent Systems Research (AISR), volume 151
2018 International Conference on Computer Modeling, Simulation and Algorithm (CMSA 2018)

GeoHash encoding can brothers and parent node can be found;
MBR as a node of minimum bounding rectangle; Ptr as a node
pointer, which points to the disk address of the node; hash table
at left-lower corner is used to store list of moving objects history
trajectories. The hash table node structure is <OID,
LeafNodeLink, LinkedList>.OID is moving object identification;
LeafNodeLink is a pointer pointing to address of moving objects
in Quadtree;LinkedList points to the head node of the one-way
linked list.The one-way link node structure is
<OID,X,Y,Geohash, StartTime, EndTime, Vx, Vy, NextLink>.
OID is moving object identification; GeoHash is the start point
of trajectory. X and Y are longitude and latitude at StartTime
respectively; StartTime and EndTime are start time and end time
of trajectory respectively; Vx, and Vy are velocity vector at X and
Y direction; NextLink points to next node.

FIGURE II. INDEX STRUCTURE

C. Update Algorithm

When the speed and direction of change exceed the threshold,
whether moving object is within MBR of leaf node, and data of
leaf node is updated directly; Otherwise, algorithm deletes old
records from the leaf nodes and selects a suitable leaf node from
its sibling node to insert a new record; if a suitable sibling leaf
node cannot be found, a subtree containing MBR of moving
object can be found backtracking on tree from leaf nodes, then
standard insertion algorithm is executed to the subtree. The
GetParentNode algorithm is introduced.

Given Quadtree as Q, Hash auxiliary table as H, direct access
table as DAT, moving object identification as oid, moving object
GeoHash as newGeohash, intermediate node variable as entry,
direct access table record variables as node, Hash auxiliary index
records as h, Quadtree record as Q, pseudo code is as follows:

entry=DAT[0];
if (entry.Geohash⊄ newGeoHash.substring(0,
newGeoHash.length-2)) {
 Update (T , oid , newGeohash)
 return ;
}
foreach(h in H)
if (h. oid ==oid){

node = h. LeafNodeLink;
}

if (node.Geohash ⊂ newGeoHash.substring(0,
newGeoHash.length-2))

write out node ;
else

{
 node =node. parent ;
 foreach(q in node) {

if (q.Geohash⊂ newGeoHash.substring(0,
newGeoHash.length-2)){
 Insert an index entry with newGeohasha into node;

return ;
 }
 }

 }
 node =GetParentNode (node, newGeohash);
 Insert(node, oid , newGeohash);

According to the input intermediate node of Quadtree,
GetParentNode algorithm can find a subtree containing updated
moving object and the node from the direct access table. Given
the direct access table as DAT, tree height as H, the intermediate
variable node level as l, the direct access table record as entry,
GetParentNode algorithm is described as follows:

foreach(entry in DAT) {
if (entry.Geohash == newGeoHash.substring(0,

newGeoHash.length-2)){
 node =entry. Ptr
foreach(entry in DAT)
{
if(node.Geohash == newGeoHash.substring(0,

newGeoHash.length-2))
 node =entry. Ptr
return node;

}
}

III. QUERY FOR MOVING OBNECTS IN ADVANCED

A. K-Nearest Neighbors

K-Nearest Neighbors (KNN) was to query k nearest moving
objects at a given time. KNN query needed to process a large
amount of data, so a lot of spatiotemporal overload was
generated based on the existing indexes. Based on the
characteristic of the same GeoHash prefix in the same region,
GeoHash encoding could be applied to the nearest neighbor
query. For example, in order to query nearest neighbors of the
Point (116.389550, 39.928167), the following query SQL
sentence can be executed: SELECT * FROM place WHERE
GeoHash LIKE 'wx4%'.

Since GeoHash encoding is based on the space filling curve,
this space filling curve has mutations. Therefore, the case
GeoHash code adjacent, but the distance far away may appear.
AS shown in Figure Ⅲ, the point A and C of encoding is more
similar to A and B, but the distance between A and C is far more
than B and A. In order to solve the problems above, eight regions
around the area can be applied to query.

386

Advances in Intelligent Systems Research (AISR), volume 151

FIGURE III. GEOHASH ENCODING

FIGURE IV. QUERY REGIONAL DIVISION METHOD

B. Time Range and Region Query

Time range and region query is to query moving objects in
the query window within a given time. In the paper, we propose
to implement the regional query by query area of GeoHash.
Firstly, the query region is divided, secondly the covered grids
are encoded (Figure Ⅳ); finally, fuzzy query is executed to each
GeoHash codes.

C. Continuous Query

Continuous query is to query the moving object trajectory
over a period of time. As shown in Figure Ⅱ, the GQ-tree had
built a one-way linked list for all moving objects, and each object
trajectory at any time can be query by OID.

IV. EXPERIMENTAL EVALUATION

In order to examine the performance of our proposed index
structure, the GQ-tree, we did an experimental evaluation. We
also implemented the TB*-tree and compared to our results.

A. Experiment

For our experiments we used a personal computer with 64
Window 7 system, Intel Core I7-3370M, 3.30GHz CPU, 4G
main memory. The index structure were implemented in C#, and
stored in MongoDB database. In our experiments, we used
moving objects generator proposed in [19].

B. Exoerimental Contents and Results Analysis

Headings, or heads, are organizational devices that guide the
reader through your paper. There are two types: component
heads and text heads.

1). Updating Performance
100000 moving objects were generated and the nodes access

were evaluated by the updates of 10k, 30k, 50k, 70k, and
90k.Results shown in Figure Ⅴ. GQ has better dynamic update
performance, and the number of update nodes access
maintained at 15. Most of the GQ index updates happened in
local, and only a few searched from top to bottom.

FIGURE V. UPDATING PERFORMANCE

2). Query Performance
The number of moving objects was 100000.Spatial areas

queries were 1%,3%,5%,7% and 9% of the whole space. The
simulation evaluated the cost of queries, query results shown in
Figure VI. The query performance of GQ-tree had better
efficiency. Through GeoHash encoding to reduce the dimension
of two-dimensional coordinates, query efficiency greatly
improved.

387

Advances in Intelligent Systems Research (AISR), volume 151

FIGURE VI. QUERY PERFORMANCE

V. SUMMARY

In the paper, a new method of moving object trajectory is
proposed, which makes full use of the advantages of four fork
tree, GeoHash encoding and hash table, etc. The update
efficiency is improved by the strategy of GEIU. Privacy
protection is a problem considered and researched to database
system. However, current privacy protection technology of
moving objects database is not mature. In virtue of GeoHash
encoding, it both can improve search efficiency and effectively
prevent location privacy leakage.

Many temporal and spatial applications (such as fire
simulation, etc.) need to efficiently query the changing range of
moving objects, but, the index proposed in the paper is designed
for moving point objects. The moving objects trajectory for
polyline and polygon were not mentioned, and this will be the
future research area.

ACKNOWLEDGMENT

This work was financially supported by the National Power
Grid Corp headquarter science and technology project(No. 2017
Yu electricity science and technology management 7#).

REFERENCES
[1] L. Zhang , D. Q. Tang, C. Zhang, et al. “Evolvement and Progress of

Spatio-temporal Index”. Computer Science, no.4,vol.37,pp.15-20,2010.

[2] X. L. Yu, Y. Chen, X. C. Ding, et al. “A Moving Object Database Model
Based on Road Network”. Journal of Software, no.14,vol.14,pp.1600-
1607,2003.

[3] W. Liao,W. Xiong, N. Jing,et al. “Research on indexing moving objects
methods”. Computer Science, no.8,vol.33,pp.166-169,2006.

[4] D. PFOSER, C. S. JENSEN, Y. THEODORIDIS. “ Novel Approaches in
Query Processing for Moving Object Trajectories”.// VLDB 2000,
Proceedings of, International Conference on Very Large Data Bases,
September pp.10-14, 2000, Cairo, Egypt. DBLP.

[5] Z. C. Yin, L. Li,Z. Wang. “Spatio-temporal index based on extended HR-
tree”. Geomatics and Information Science of Wuhan University,
no.12,vol.32,pp.1131-1134,2007.

[6] H. Xiao, Q. Q. Li. “Access methods in moving objects databases”. Journal
of computer applications, no.4,vol.30,pp.1064-1067,2010.

[7] J. PATEL, Y. CHEN, V. CHAKKA, et al. “An Efficient Index for
Predicted Trajectories”.//Proc. of ACM SIGMOD International
Conference on Management of Data. Paris, France: [s. n.], pp.637-646,
2004.

[8] Y. Tao, D. PAPADIAS, J. Sun. “The TPR*-Tree :An Optimized Spatio-
Temporal Access Method for Predictive Queries”.// International
Conference on Very Large Data Bases. VLDB Endowment, pp.790-801,
2003.

[9] S. PRABHAKAR, Y. Xia, D. V. KALASHNIKOV, et al. “Query
Indexing and Velocity Constrained Indexing: Scalable Techniques for
Continuous Queries on Moving Objects ”. Computers IEEE Transactions
on, no.10,vol.51,pp.1124-1140,2002.

[10] Y. H. Wang, E. R. Zhang. “ATPR-Tree: spatio-temporal index with
attribute dimension”.Computer Engineering and Application,
no.7,vol.53,pp. 79-87,2017.

[11] J. M. PATEL, Y. CHEN, V. P. CHAKKA. “STRIPES: an efficient index
for predicted trajectories”.// ACM SIGMOD International Conference on
Management of Data, Paris, France, June. DBLP, pp. 635-646,2004.

[12] J. Zeng, X. L. Ke. “Improved Quadtree based indexing method for moving
objects”. Geomatic Science and Engineering, vol.3,pp.40-43,2012.

[13] J. Gong, S. N. Ke, Q. Zhu, et al. “An Efficient Trajectory Data Index
Integrating R-tree, Hash and B*-tree”. Acta Geodaeticaet Cartographica
Sinica, no.5,vol,44,pp. 570-577,2015.

[14] J. Guo, G. J. Liu, L. Guo, et al. “A Whole-time Index Design Based on
3D+ -TPR-tree for Moving Point Targets”. Acta Geodaeticaet
Cartographica Sinica ,No.3,vol.35,pp. 267- 272, 2006.

[15] X. C. Meng, S. Z.Ye. “New spatio-temporal index method based on real-
time data and query log distribution”.Journal of Computer Applications,
no.3,vol.37,pp.860-865,2017.

[16] L. B. Ma, X. C. Zhang. “Research on full-period query oriented moving
objects spatio-temporal data model”. Acta Geodaeticaet Cartographica
Sinica ,no.2,vol.37,pp.207-211,2008.

[17] X. T. Yi, Z. Xu,K. Zhang. “Index structure for moving objects based on
restricted network”.Computer Science,no.5,vol.42,pp.211-214,2015.

[18] L. L. Mong,H. Wynne,S. J. Christian , et al. 2003. “Supporting frequent
updates in R-trees:A bottom-up approach,” VLDB2003,Berlin.

[19] T. Brinkhodd. “A Framework for Generating Network-base Moving
Objects,” Geoinformatica,no.2,vol.6,pp.153-180 , 2002.

388

Advances in Intelligent Systems Research (AISR), volume 151

