
Decentralized Approach for Autonomous
Mechatronic Oil Extraction

Igor Kalyaev, Anatoly Kalyaev and Iakov Korovin
Southern Federal University, Taganrog, Russia

Abstract—In the paper we tried to depict the process of
creation of autonomous mechatronic oil extraction
production (AMOEP). Basically we propose that in its
membership AMOEP includes a variety of well agents (WA)
of different purposes to be proceeded. The key point of such
AMOEPs must be a controller, which functions form the
construction time chart of manufacture of the product from
the WA, included in the AMOEP, as well as a plan for
transport operations. Thus we propose new decentralized
method of scheduling AMOEPs, based on negotiations of
independent agents, implemented on different wells. To
realize that, we consider to represent tasks for oil extraction
in the form of an acyclic graph, each vertex is assigned a
certain operation, performed by one of the WA. The
distribution of tasks between the WAs is performed by their
collective interaction. Also a detailed algorithm of the
software well agent is presented.

Keywords—autonomous mechatronic oil extraction process;
decentralized dispatcher; task graph, software agents; collective
decision making

I. INTRODUCTION

Nowadays we can see, how technological progress raises
importance of high-tech products in oil industry worldwide
implementation and leads to a problem of creating autonomous
mechatronic oil extraction production (AMOEP), capable to
quickly fulfil the industrial tasks, according to investment
strategy of the company. This AMOEP should be composed of
a wide range of well agents (WA) of different applications. The
customer creates and sends via the cloud the task to extract
discrete volume of hydrocarbon, using the WA, included in the
AMOEP. According to this automatic task a manager must
build AMOEPs plan (schedule time) of fulfilling the product.
Next, the plan is launched in the production, according to the
investment strategy of the enterprise.

The organization of such AMOEPs requires the solution of
two fundamental problems: firstly, the need to develop a "form"
representation of the job, "understandable" for the dispatcher of
AMOEPs, and secondly, to develop a method for automatic
generation of plan (timetable) of performing tasks, using the
WAs. The solution of these problems is presented as follows.

II. THE FORMAL STATEMENT OF THE PROBLEM

We assume that the AMOEP includes a set of WA

1 2, , ... NR R R so as as two warehouses - warehouse of
components and a warehouse of extracted production. All WA
and stores share a common transport line, by means of which

components, articles and the workpiece can be transferred
between the warehouses and WA.

Assuming that each WA iR can perform a set of operations

1 2, ,...i i i
i LA A A A (1, 2,...,)i N , and generally i jA A

(1, 2,..., 1, 1,...,)j i i N   . We assume that the WA iR

performs i
lA (1, 2,...,)l L during ()i

i lt A , and runtime
operations identical various WA same. Also assume that the
transport time of components and workpieces between the
individual WA, and also between the WA and warehouses is

()Пt S where S - transport line length.

We assume that the AMOEP at random times over the
corporative net (cloud) enters a plurality (stream) of different
specifications for the manufacture of articles

1 2, , ..., MZ Z Z Z , wherein for each job lZ operator sets

point in time max
lT to which he wishes to achieve the oil

extracted.

The aim of the AMOEP is to perform all tasks in the
manufacturing of products 1 2, , ..., MZ Z Z Z to established
operators in time.

Formalization of jobs. In order to AMOEP could carry out
the production of some products lZ Z , the job for its
production must be submitted by the customer in a standardized
formalized form, understandable for automatic AMOEP
controller. The task lZ Z can be represented as an acyclic

graph (,)l l lG Q X , each node j lq Q which is attributed to a

certain operation jA , belonging to the set of operations,

performed by some WA, and if two vertices jq and 1jq  are

connected by arc 1(,)j jx q q  it means that the operation 1jA 

attributed to the top 1jq  must be performed to complete the

operation jA attributed to the top jq . Input vertex (,)l l lG Q X

defines operations for the delivery of parts, needed for the
manufacture of products from a warehouse and a final vertex
defines an operation to place at the warehouse of the final
product, obtained as a result of all of its manufacturing program.

III. PRINCIPLES OF THE AMOEP MANAGER ORGANIZATION

After the job lZ in the manufacture of products is
formalized in the form of a graph (,)l l lG Q X , it is received the
AMOEP controller whose functions consist in the construction
plan (time chart) articles of manufacture, i.e., in the distribution
of individual operations jobs lZ bound between them to

400Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Advances in Intelligent Systems Research (AISR), volume 151
2018 International Conference on Computer Modeling, Simulation and Algorithm (CMSA 2018)

perform a specified time in accordance with the job graph
(,)l l lG Q X .

You can offer two ways to organize such a manager.

In a simpler embodiment, the AMOEP can be controlled by
means of a specially dedicated server unit, whose function is to
distribute the incoming jobs workflow 1 2, , ..., MZ Z Z Z
between WAs. However, such a centralized organization
manager AMOEP has a number of disadvantages. Firstly, a
large number of WA solution to the problem of scheduling work
with a single server node will be difficult because of the need to
perform computationally intensive real-time receipt of
assignments. Second, it is more difficult to scale AMOEPs (i.e.,
adding to its composition of new WA), because it is necessary
to completely change not only the program of the central
controller, but also the architecture of relations with the WA
Manager. And finally, thirdly, the AMOEP with a central
controller becomes undependable because the controller failure
leads to disastrous consequences for the entire AMOEP as a
whole. All these problems are much more complicated in the
case where the AMOEP must not perform a single task, and the
task flow into the unknown times ahead.

All these disadvantages can be avoided by using the
principles of decentralized multi-agent scheduling in distributed
systems [1][2][3][4]. Wherein each of the WA, included in the
AMOEP must have its software agent, representing "interests"
of the well during the scheduling and allocation of incoming
jobs to optimize operations must be carried out between the WA
by their collective interaction information through a
communication channel (fig.3).

This raises the question - how agents should communicate
with customers and get them jobs? Such interaction can be
performed by node playing the role of "bulletin board" (BB),
where customers can post their job. In this case, he job lZ
located on the (BB), must contain:

- Count (,)l l lG Q X tasks;

- a list of vertices set lQ and the operations that are
attributed to them;

- moment of time max
lT to which the user wishes to obtain a

finished product.

Agents need to periodically poll for the purpose of loading
the WA work. In this case, if the job lZ Z it cannot be
fulfilled by one WA iR , the agents should form a certain
virtual organization - community, consisting of a plurality of
WA , ,...,l i j kR R R R common purpose of which is a quest

lZ Z to set the customer in time.

In the integrated form of AMOEPs work with multiagent
manager can be represented as follows.

1. The customer creates his job lZ Z in the form of a

graph (,)l l lG Q X , establishes a point in time max
lT to which he

wants to get the finished product, and places to handle jobs.

2. Agent iR not involved in the performance of other tasks
to queries is in search of work for "their" WA. In case of the job
on to lZ Z agent attempts to join the community lR for its
implementation. For this agent iR allocates tasks fragment

lZ Z which is not fixed earlier for other agents, that it can
perform a set time using "own" WA. If such a fragment is
detected, the agent iR goes in lR and proceeds.

4. Agent iR monitors the progress of the operations
accepted for execution fragment tasks, periodically assessing
the time of their completion. If the agent, according to any
reasons did not have time to complete the execution of these
operations to the set point in time, it informs about it on the
bulletin board and withdraws from the community lR .

5. In case of successful execution of all received job
operation lZ agent iR transmits via the transport line product
to another WA for the subsequent operations.

Using the principles of collective decision-making
AMOEPs provides:

- high availability systems because it lacks the
"bottleneck" in the form of a central controller, and the failure
of any of the agents does not lead to disastrous consequences
for the AMOEP as a whole;

- virtually scaling of WA consisting of AMOEP by their
easy connection to the information communication channel;

- reduction of the processing load on a single software
agent while solution of scheduling problem.

However, on the other hand, the use of multiagent
scheduling principles in the management of AMOEP requires
the development of an algorithm of the software agent. The next
part of the paper is dedicated to this development.

IV. THE ALGORITHM OF SOFTWARE AGENT WORK

Before you begin to develop multiagent scheduling
algorithm AMOEP you ought to introduce the concept of
"thread." Under the thread, we mean a sequence of vertices

1 2, ,...,f f f
f kq q q H column (,)l l lG Q X tasks lZ Z

wherein vertices f
jq and 1

f
jq  (1, 2,..., 1)j k  connect arc

1(,)f f
j jx q q  . In other words the thread defines a task set of

operations lZ to be executed sequentially. In this case under

length p
ft thread fH we mean the total time, required to

perform its assigned heights of operations, defined as

 п ,
1

() ()
k

f
f p i p c

i

t t A t S


  , where ()f
p it A - time spent by WA

pR R to perform the operation f
iA , attributed to the top

f
i fq H (1, 2,...,)i k ;

п ,() p ct S - the time, required to transport the product from

the WA pR R , performing surgery f
iA cR R performing on

401

Advances in Intelligent Systems Research (AISR), volume 151

stage following operation 1
f

iA  thread fH ; ,p cS - the length of

the transport line between the pR and сR .

If surgery f
iA and 1

f
iA  performed the same WA pR ,

respectively, п ,() 0 p pt S  .

Obviously, if the entire thread fH is performed one

resource f
pR , its length will be

1

()
k

f
f p i

i

t t A


  . (1)

Thus, if the known time required 1
f

kT  for execution of the

entire thread fH , it is possible to determine the allowable time

points f
dT beginning of all operations f

dA , assigned to vertices
f

d fq H (1, 2,...,)d k

(In which the WA pR time to complete the entire thread

fH to the desired point in time 1
f

kT ) as

1 () (1,2,..., 1)
k

f f f
d k p i

i d

T T t A d k


    .

(1, 2,..., 1)d k  . (2)

Based on these considerations, we propose the following
procedure for multi-agent scheduling work AMOEPs when the
task flow is fulfilled.

The user creates his task lZ Z in the form of a graph

(,)l l lG Q X and determines the desired point in time max
lT to

which its decision is to be obtained. Descriptor represented thus
job is lZ Z , placed on a bulletin board.

Agents, not involved in performing any tasks, refer to the
BB in search of work. If the agent is free, RF pR R detects

on to handle the job lZ , He makes an attempt to enter the
Community lR for its implementation.

Since, as we adopted above, each WA has some
specialization (i.e., can perform a limited set of operations), in
the general case, it may be that the WA pR , able to perform all

the operations, is not assigned to the vertices of (,)j j j
l l lG Q X

tasks lZ . Therefore, in the graph (,)j j j
l l lG Q X subgraph

(,)jp jp jp
l l lG Q X must allocate whose vertices in plurality of

operation pA performed by RF pR . After that it is necessary

to analyze whether there are (,)jp jp jp
l l lG Q X peaks in the box for

which is there is required time of their execution set. If there are
no such peaks, it means that the agent pR could not join the

community lR to fulfill tasks lZ and so it reverts to the regime
of the survey with a view to find other jobs.

Otherwise, agent pR highlights in the column (,)l l lG Q X ,

that is stored in the tag assignments lZ on the longest thread
1 1 1

1 1 2, ,..., kq q q H , according to the expression (1), the top

end 1
kq which is attributed to the desired point in time of its

execution 1
1kT  . The latter may be performed, using one of the

well-known search algorithms of extreme paths on graphs [5].

Further, the agent pR determines in accordance with (2) at

time 1
1T when it needs to begin the first operation thread 1H ,

i.e. operations 1
1A , attributed to the top 1

1 1q H in order to have
time to complete the execution of the entire thread 1H at a

given moment of time 1
1kT  .

If it turns out that 1
1 текT T where текT - the current time, it

means that the WA pR can not ensure that the entire thread

workflow 1 1 1
1 1 2, ,..., kq q q H is proceeded to the point in

time set by the customer 1
1kT  . Since we assumed that the

execution of transactions in various WA is equal, neither any
other WA also is not able to carry out this thread to the desired
point in time, which indicates that the job lZ can’t be made to

the installed client in time. In this case, the agent pR sends a

message to the appropriate. The task lZ removed from the TO,
and the consumer is sent a message about the impossibility of
his job to the set point in time. Thereafter well agent pR reverts

to the survey in search of work.

If the condition 1
1 текT T of the executed thread 1H is true,

the agent pR accepts the execution sequence of operations,

assigned to its vertices. When this agent pR gets a next

modification of job descriptor lZ , namely:

1. its identifier is recorded in the list of community members

lR to fulfill tasks lZ ;

2. vertices, belonging to the thread 1H , are excluded from
the count (,)l l lG Q X tasks lZ , resulting in a new graph

1 1 1
1(,) (,)l l l l l lG Q X G Q X H ;

3. all the vertices of the graph 1 1 1(,)l l lG Q X incident to a
vertex thread 1H , are attributed to the required times of their
execution, which are determined from the following
considerations.

Suppose that some vertex 2
fq column 1 1 1(,)l l lG Q X incident

to the top 1
bq , belongs to the thread 1H . This means that the

operation is feasible, attributed to the top 1
bq can be started only

after the operation, attributed to the top 2
fq column 1 1 1(,)l l lG Q X .

Therefore, it is obvious that the results of operations, attributed
to the top 2

fq , should be prepared and transferred by WA pR

performing operations yarns 1H not later than the desired time

402

Advances in Intelligent Systems Research (AISR), volume 151

point 1
bТ start of the WA pR operations 1

bA , attributed to the

top 1
bq , determined according to expression (2) as

1 1 1
1 ()

k

b k p i
i b

T T t A


  . (3)

Otherwise WA pR will not have time to finish the

execution of the thread, taken 1H to the desired point in time
1

1kT  .

Therefore, the top 2
fq column 1 1 1(,)l l lG Q X , attributed to the

required time of its execution 2 1
1f bT T  as well as the identifier

of the WA pR to which the operation execution results

attributed to the top 2
fq should be transferred.

Similarly the moments are determined by the required 2
1mT 

execution of all other vertices 1 1 1(,)l l lG Q X incident to the
heights of the thread 1H .

If, after modifying a new graph 1 1 1(,)l l lG Q X tasks lZ on to

another is not empty, i.e., 1 1 1(,)l l l G Q X , the process of
creating a community lR for the assignment lZ continues
further.

Let us assume that after some time another free WA cR
detects on to handle the job lZ and attempts to join the
community lR for its implementation.

For this, agent сR highlights in the column 1 1 1(,)l l lG Q X

subgraph 1 1 1(,)с с с
l l lG Q X whose vertices are assigned

operations included in the executable WA сR a bunch of сA .

Further, in the column 1 1 1(,)с с с
l l lG Q X agent сR allocates the

longest thread 2 2 2
2 1 2, ,..., fq q q H the ultimate top 2

fq ,

which is attributed to the required runtime 2
1fT  , and analyzes

the possibility of its execution with the help of "his" WA to this
point in time. The expression (2) defines the time 2

1T of the

operation execution 2
1A , attributed to the first vertex 2

1q of this
thread 2H and compares it with the current time текT . If

2
тек 1T T , it means that the WA сR cannot carry out this thread

to the desired point in time 2
1fT  thus says that all the task as a

whole can’t be fulfilled in the demanded time limits. In this case,
the task is removed from the TO, the customer is sent a message
about the impossibility of his job to be done in desired time, and
agent сR again stands into polling mode up looking for work
for "their" resource.

In case, if the condition 2
1 текT T is fulfilled, the agent cR

assumes the execution of transactions, attributed to the heights
of the thread 2H and performs the next task descriptor
modification lZ on the TO:

- the identifier of the agent cR is recorded in the list of
community members lR to address the problem lZ ;

- the vertices, belonging to the thread 2H are excluded from

the count 1 1 1(,)l l lG Q X , resulting in a new graph 2 2 2(,)l l lG Q X .

- tops 3
pq column 2 2 2(,)l l lG Q X incident to the vertex 2

dq

thread 2H , attributed ID WA cR which results of the execution
of these operations must be sent as well as the desired time of

their execution, are defined as 3 2 2
1 1 ()

f

p f c i
i d

T T t A 


  .

Further, the job allocation process operates lZ , activated by
next available agent who discovered it to handle on, etc. until
then, until it turns out that after the next modification of the
count (,)j j j

l l lG Q X became empty, which means that all the
task operations lZ have dismantled agents, which entered the
community lR for its implementation.

After some agent pR is chosen to thread execution

1 2, ,...,f f f
f kq q q H he starts to perform operations,

assigned to vertices, using "their" WA. In this case, before
starting the next operation f

dA , attributed to the top f
d fq H

(1, 2,...,)d k agent pR must verify, first, the presence of all

components and workpieces required for its implementation,
and, secondly, observance of the temporary schedule of the
entire thread fH generally.

As for the performance of sub-tasks, f
dA may require the

blank, obtained by performing another adjacent thread WA cR .

Then at the time of start of the WA pR operations f
dA it may

occur that these blanks are not yet available. In this case, the
agent pR should go into standby mode to necessary

preparations. This expectation can last as long as the condition

тек
f

dT T is true, where f
dT desired start time operation

execution dA , attributed to the top f
d fq H and determined

according to the expression (2).

If it turns out that тек
f

dT T , it means that the WA pR does

not have time to complete the remaining operation thread fH

to the desired point in time 1
f

kT  . In this case, the agent pR must

be known before that happened behind schedule the task, and
therefore the task lZ cannot be resolved to the installed
customer in time. In this case, the task is removed from the TO,
the user is informed about the impossibility of its execution by
the time set by him, and all agents entered into the Community

lR of its decision send a message about the termination of the
assignment process lZ after which they go into search mode to
new jobs.

403

Advances in Intelligent Systems Research (AISR), volume 151

After successful execution of the thread operations fH

agent pR re-enters the polling mode to the purpose of entering

into a new community for the next assignment.

The process of executing the job lZ lasts as long as it
appears that the list of participating community agents lR to

implement is empty, and the empty graph (,)j j j
l l lG Q X is stored

in the task descriptor lZ . After that, the job is removed from the
TO, and the customer is sent a message about the successful
completion of his mission.

The above process corresponds to the following algorithm,
describing enlarged functioning of an agent, representing WA

pR in the process of scheduling the work AMOEPs.

Algorithm 1.

1. Free WA pR BB polls.

2. When a job is on lZ agent pR analyzes the task graph

(,)j j j
l l lG Q X . If (,)j j j

l l lG Q X =, the transition to the claim 1,
otherwise

3. In the column (,)j j j
l l lG Q X agent pR stands subgraph

(,)jp jp jp
l l lG Q X , whose vertices are assigned a plurality of

operation pA performed by WA pR .

4.If (,)jp jp jp
l l l G Q X  go to claim 1, otherwise

5. Agent pR highlights in the column (,)jp jp jp
l l lG Q X the

longest thread 1 2, ,...,p jp jp jp
j kq q q H , the top end of which is

attributed to the required runtime 1
jp

kT  (At the time of job

placement iZ at the required time to 1 max
jp l

kT T  attributed to
only the final top kq column (,)l l lG Q X). If any thread in the

box (,)jp jp jp
l l lG Q X is not true, then go to 1, or

6. Agent pR determines the allowable time when the need

to start the thread 1 2, ,...,p jp jp jp
j kq q q H to be able to

complete its performance to the desired time 1
jp

kT  as

1 1
1

()
k

jp jp jp
k p i

i

T T t A


  .

7. If 1 тек
jpT T where текT - the current time, the transition

to claim 16, or

8. Agent pR assumes execution thread

1 2, ,...,p jp jp jp
j kq q q H , which modifies the job descriptor lZ

on the TO:

recording in the list of members of the community lR your

ID; modifies count (,)j j j
l l lG Q X tasks lZ by deleting the thread

vertices 1 2, ,...,p jp jp jp
j kq q q H , i.e.

1 1 1(,) (,)j j j j j j p
l l l l l l j
   G Q X G Q X H ; ascribes to the heights

1,j p
jq  modified Count 1 1 1(,)j j j

l l l
  G Q X incident to the vertex

,j p
bq thread 1 2, ,...,p jp jp jp

j kq q q H WA ID pR you want to

transfer the results of execution of the operation 1,j p
fA 

attributed to the top 1,j p
fq  As well as the desired time of their

execution, determined according to the expression (2).

9. Agent pR proceeds to the flowchart assigned thread

vertices 1 2, ,...,p jp jp jp
j kq q q H ; 1d .

10. If тек
jp

dT T where 1 ()
k

jp jp jp
d k p i

i d

T T t A


  - start time

of the desired operation jp
dA , attributed to the top jp p

d jq H

Then go to claim 16, or

11. Agent pR checks for blanks, necessary to perform the

operation jp
dA . If the blanks are not yet available, go to n. 10,

or

12. Agent pR performs jp
dA ascribed to the top jp

d jq H

using its WA.

13. If the agent pR has already received a flag of termination

of the assignment lZ , the transition to the claim 1, otherwise

14. 1d d  , if d k , the transition to claim 10, or

17. Agent pR according to the successful implementation

of all the operations, the thread assigned to the vertices jH

tasks lZ . Identifier agent pR is excluded from the list of

members of the community lR for performing this task.
Transition to claim 1.

16. Assignment lZ cannot be made to the installed client to

the time max
lT . descriptor assignment lZ removed from the TO,

the customer is sent a message about the impossibility of his job
proceeding to the desired point in time, and all agents, whose
numbers are stored in the list of community members lR to
fulfill tasks are sent a message is sent to terminate their
execution. Transition to claim 1.

V. CONCLUSIONS

The article describes the basic principles of the organization
and functioning of decentralized autonomous mechatronic
manufacturing plant. The implementation of these principles
provides:

- a high loading of WAs in the AMOEP;

- the ability to automatically perform job flow on the
manufacturing of various products;

- quasioptimal adaptive WAs allocation based on their
computing power estimation in real-time when a job is in
progress;

- the possibility of unlimited scalability of WAs in AMOEP
due to decentralization;

404

Advances in Intelligent Systems Research (AISR), volume 151

- increased failureproof of AMOEP, since it lacks
components, failure of which leads to failure of the entire
AMOEP as a whole.

ACKNOWLEDGEMENTS

The research is supported by Russian Foundation for basic
Research (RFBR) via projects 17-08-01219.

REFERENCES
[1] Kalyaev A.I., I.A. Kalyaev,. 2015. Decentralized distributed system

control method of performing task flow - Mechatronics, automation,
control, № 9, s.585-598.

[2] Kalyaev A.I, I.A Kalyaev, Korovin I.S., 2015. The method of multi-agent
scheduling resources in a heterogeneous cloud environment when the task
flow. - Journal of Computer and Information Technology, number 11, pp.
34-40.

[3] Kalyaev A.I., 2013. Multiagent Approach for Building Distributed
Adaptive Computing System / Procedia Computer Science, Volume 18,
Pages 2193-2202 (URL: http://dx.doi.org/10.1016/j.procs.2013.05.390)

[4] Kalyaev A.I, Korovin I.S., 2014. Adaptive Multiagent Organization of the
Distributed Computations / AASRI Procedia Volume 6, Pages 49-58
(URL: http://dx.doi.org/10.1016/j.aasri.2014.05.008)

[5] Reinhold E., Nivergelt Yu, N. Deo., 1980. Combinatorial algorithms.
Theory and practice. - M .: Mir. - 476 p.

405

Advances in Intelligent Systems Research (AISR), volume 151

