
On Evolution of Statistical Inference

D A S Fraser ∗

June 2, 2018

Abstract

The foundations of statistics have evolved over many centuries, perhaps mil-

lennia, with major paradigm shifts of the form described in Kuhn (1962). We

briefly consider these important transitions and how they have led to major

shifts in the foundations of statistical inference. Clearly there is no conventional

mathematical or axiomatic basis. But there is a progressive clarification in the

processes of statistical inference so that current theory can now coherently and

definitively handle a wide range of inference problems.

1 Introduction

Statistics theory with many variants has been evolving for many centuries, from

primitive counts and tabulations, to averages and scalings, through the use of

probability to construct statistical models, to Bayes methodology, to testing

and decision theory, to Fisher design and analysis, to exploratory and empirical

methodologies, to saddlepoint and likelihood approximations. These many in-

terim steps have sometimes been in agreement, sometimes in conflict, sometimes

politicized or promotional, but often with need for more unity and integrity.
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We focus on the key evolutionary steps where major transitions of emphasis

or substance have occurred in the statistics theory; we do not attempt a detailed

history of the developments themselves.

2 Records counts and tabulation

The emergence of the written word must surely mark the beginning of records,

with recorded counts and tabulations soon to follow. Counts and tabulations

gained importance with the rise of official statistics in turn providing background

material for life insurance and other such endeavours. Modern big data is just a

reemergence of counts and tabulations on a massive scale. The need for statistical

methods for such data is just now gaining the attention it deserves.

3 Statistical models

Probability arose from the assessment of gambling results in the 17th century and

earlier, and developed as part of mathematics from the 18th century onward. Its

introduction to counts and tabulations served to address possible alternatives to

any particular tabulation, thus giving us the statistical model, with probability

for the possible alternatives, and parameters for the unknowns in the determin-

istic and probabilistic components. Such a model can then be presented in a

density form as f(y; θ) often with a Euclidean differential dy. But models can

also be presented in many other forms, say using distribution functions, or even

structural equations that embed the randomness in specified error distributions.

The statistical problem can then be viewed as the analysis of the combination

{f(y; θ), y0} where y0 designates the observed data on the variable y. The infer-

ence problem is then to ascertain what that model data combination says about

the value of the unknown parameter θ.

4 Early inference

With tabulations and curiosity concerning possible patterns, the average and

root mean square deviation allowed the assessment of patterns such as ”central
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tendency” to be addressed pragmatically. The Central limit theorem or its early

form as DeMoivre’s (1738) version for the Binomial distribution led to a more

formal assessment of departures from what one might expect under specified

conditions.

5 The Bayes dilemma

Bayes (1763), as published in 1763, had been examining the Binomial Model

f(y; p) = (ny )pyqn−y with observed data and, being aware of the conditional

probability formula, proffered a random source π(p) for the realized p value and

even suggested a modified roulette wheel with behaviour π(p) as having produced

that realized value p; this gave him an alleged joint model π(p)f(y; p) for (p, y)

and then the conditional distribution cπ(p)f(y0; p) in the presence of observed

data. Mathematics majors of course know that to use a theorem with a missing

ingredient you can’t just make it up and then assert that the results of the

theorem apply. At that earlier time many prominent mathematicians, Boole,

Venn, Chrystal. De Morgan and others, saw the flagrant flaw in this Bayes

approach and objected with varying vehemence; for a lively discussion of the

dialogue see Fisher (1956). Laplace (1812), however, in 1812 with his powerful

involvement in science and perhaps anticipating confidence was mildly supportive

but sought outside principles, such as that of non-informative prior information,

to support the choice of a prior distribution.

The Bayes approach however is still widely practised despite serious criti-

cisms. It might well have had greater influence had it been promoted as an

exploratory methodology.

6 Sufficiency and Likelihood

The fundamental concepts of sufficiency and likelihood were introduced by Fisher

and formally discussed in Fisher (1922) as part of fundamental new directions for

statistics theory. A statistic t is sufficient if the conditional distribution f(y|t; θ)
given the statistic is free of the parameter θ, that is, the conditional density can

be written as just f(y|t). The development of sufficiency theory could also have
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been expressed as: t is sufficient if the the parameter only affects the statistic

t, thus f(y; θ) = g(t, θ)h(y). As sufficiency reduces the data size from that of

the full data, say n, to that of the statistic t say d, there is serious interest

quite naturally in finding the statistic that makes the maximum reduction, thus

extracting all the information available in as simple a form as possible; such a

statistic is called a minimum sufficient statistic.

The likelihood function from a model data combination records how probabil-

ity at the observed data depends on the parameter: thus L(θ) = cf(y0; θ) where

c is an arbitrary positive constant that forces likelihood to record only relative

values of probability at the observed data y0.

There is also a simple set theory viewpoint that directly gives the likelihood

function. From the model and data we have of course the function f(y; θ); and

we know the value y = y0: so put them together and of course the information

is just f(y0; θ). In addition however there is always implicitly a support metric

that is specified but just up to a constant multiple. We thus obtain the likelihood

function L(y0; θ) by an almost trivial argument.

It was only much later, that Barndorff-Nielsen (Barndorff-Nielsen) in 1976

noted that the mapping from the data space {y} to the possible likelihood func-

tions provided the minimal sufficient statistic immediately. Thus the two con-

cepts, sufficiency and likelihood, are intrinsically related, almost in a mild equiv-

alence. And then even further there is multi-faceted irony in finding much later

that Fisher (1934) much earlier in 1934 had stated this as obvious; see the last

complete paragraph on the page 300.

7 Reject or Accept

As mentioned in Fisher (1956), Chapter 4, tests of significance have been in wide

usage in the early years of the 20th century, for example, the Pearson χ2 test and

the Student t-test. In these tests some measure of departure of data from what

was expected was compared with the corresponding distribution for such under

the hypothesis being examined, to see if the data are in some reasonable range of

what might be expected under the hypothesis. Fisher’s purpose in discussing the

tests of significance was to draw critical attention to a 1933 paper by Neyman
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and Pearson (1933) that proposed a mechanization of tests of significance: the

hypothesis being tested would be Rejected or Accepted according as whether

or not the value of a departure measure was beyond some critical value often

α = 5% under the hypothesis distribution. In addition, the critical value would

be determined so as to maximize the probability of rejection under alternatives to

the hypothesis. This automatic Reject or Accept was viewed by Fisher as totally

at odds with appropriate scientific practise. However, this automatic process was

well supported by the mathematics community at that time so negative criticism

of the decision theoretic approach was easily ignored. It was not until 1959 that

Sterling (1959) gave serious and well documented criticism of the Reject Accept

procedure.

However more recently there has been much increased attention to the use

and misuse of p-values. Even the Editors of one journal in the social sciences

have declared they will not allow p-values in new submissions to the journal;

that is, not allow the Reject-Accept version for p-values. And the American

Statistical Association has had a committee to address the role of p-values; and

others are considering whether the rejection level should be moved to 0.5%. But

this seems to overlook the fact that deciding whether hypotheses are true or

not based on a break point in some measured variable is a violation of scientific

and common sense. Indeed Rozeboom (1960) cites a philosophical epigram that

the null hypothesis significance test was the “glory of science and the scandal of

philosophy”. We return to this with a discussion of the p-value function in §10

and §11 .

8 Subjective priors

In 1954 Savage (1953) discussed the use of subjective priors, priors that repre-

sented feelings, judgements, perceptions concerning an unknown parameter of a

statistical model in an investigation. The prior would be used with the given

model in a conditional probability analysis. This is not what Bayes had done

when he proposed what can be viewed as a mathematical prior to initiate a

statistical analysis. Rather it accepts a prior with its subjective content as rep-

resenting some background information concerning the unknowns in the problem,
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and then with the observed data does standard probability analysis: this leads

to a presentation of a nominal conditional probability model as a description

of the unknown parameter value. As such it is not what Bayes had proposed,

but is standard model building but with different stages in the construction of a

composite model and varying support for the different stages. Nonetheless many

with Bayesian sympathies quickly embraced the approach as a serious extension

of the standard Bayes analysis of the time.

The quality of prior information can be a major factor as to whether it can

be used reliably in such an analysis. In addition in many contexts, such prior

information should explicitly not be used. For example in Experimentation and

Sampling such information would not be used as it is in conflict with physical

randomization, the standard procedure for validation in experimental design and

analysis. Accordingly those involved with Bayes type analysis fall generally into

two groupings: those with strong views on the merits of the subjective approach,

and those supportive of the mathematical priors of Bayes and Laplace recently

called objective priors, in contrast to the subjective. The term objective is a sub-

stantial misnomer as the corresponding priors are clearly not objective, although

they may have objective intentions. More recently the term calibrate has been

invoked, where the priors lead to results that have objective validity, in the sense

of reproducibility or confidence. As such one might say that Laplace’s strong

support for certain mathematical priors was in substance pragmatic and thus an

anticipation of confidence, Fisher (1935).

9 Confidence

Fisher (1935) in an article entitled ”Inverse probability” wrote destructively of

the Bayes approach (here §5), and introduced fiducial probability as an alterna-

tive. In its simplest form the model for a variable y can be given in distribution

function form as say u = F (y; θ). The variable u under the model is known to

have a uniform distribution on the interval (0, 1). Fisher then in effect substituted

the observed y0 obtaining u = F (y0; θ) and allowed the Uniform distribution for

u to backwardly induce a distribution for θ, to be called the fiducial distribution

based on that model with data. The right tailed distribution function, the sur-
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vivor function, for this fiducial distribution is then given as s(θ; y0) = F (y0; θ).

Neyman (1937) scolded Fisher for not following “the classical theory of proba-

bility”, and then restricted the fiducial inversion to sets on the pivot space {u},
and renamed the resulting fiducial intervals as confidence intervals. The credit

for confidence should truly go to Fisher but the renaming of the fiducial inter-

vals somehow gave Neyman the credit for the fiducial/confidence methodology;

nevertheless Neyman’s point was well made. One can note that the probabilities

called confidence are just those of a sub-algebra in the model data structure.

More generally the fiducial/confidence procedure begins with a pivotal quan-

tity say z = z(y, θ) that has a fixed distribution under the model and then uses

that distribution for z to backwardly induce a distribution for θ using z = z(y0, θ).

However appealing or unappealing the argument may be, the resulting confidence

argument is now well established in the profession, provided one uses the Ney-

man pivotal sets. Recently the BFF conferences organized by Xiao-Li Meng at

Harvard University are seeking some proper recognition for parameter distribu-

tions including fiducial distributions; the abbreviation BBF stands for Bayesian,

Fiducial, and Frequentist but also for Best Friends Forever. Thus small social

events deprived Fisher of the major credits for confidence.

10 Approximate statistical models

Likelihood and sufficiency (§6) when available can often provide a large reduction

in the size of the data variable, and pivotal quantities (§9) can similarly provide

a reduction as part of the formation of confidence intervals and regions. But the

availability of these for particular models is unfortunately too rare.

In 1954 Daniels (1954) introduced the saddlepoint method to statistics from

applied mathematics. The saddlepoint method can produce highly accurate ap-

proximations for many types of statistical model, in particular exponential mod-

els. An exponential model has the general form

f(y; θ)dy = exp{ϕT (θ)s(y)− k[ϕ(θ)]}H(y)dy. (1)

It can be seen that only the parameter ϕ influences the distribution and then
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only through the variable s(y). Accordinly the effective model js

g(s;ϕ)ds = exp{ϕT s− k(ϕ)}h(s)ds. (2)

The importance of the saddlepoint approach was not recognized for some

25 years until Barndorff-Nielsen and Cox, (Barndorff-Nielsen and Cox, 1979)

discussed a broad range of examples; in particular the exponential model (1) or

(2) can be rewritten as

h(s;ϕ)ds =
ek/n

(2π)p/2
exp {−r2/2}|ϕϕ(ϕ̂)|−1/2ds (3)

using the familiar statistical quantities: r2/2 = `(ϕ̂; s) − `(ϕ : s) = ˆ̀− ` is

the log-likelihood ratio quantity; ϕ̂ = ϕ̂(s) is the maximum likelihood esti-

mate that maximizes the log-likelihood `(ϕ; s); ϕϕ(ϕ̂) is the second derivative

−(∂/∂ϕ)T (∂/∂ϕ)`(ϕ; s)|ϕ̂ of the negative likelihood; and p is the dimension of

the parameter. The use of the familiar statistical quantities gives the formula

incredible power and applicability, essentially replacing sufficiency and pivotal

quantities for statistical analysis. But even more importantly the corresponding

distribution function is available Barndorff-Nielsen (1991) in the scalar parameter

case with full third order accuracy,

H(s;ϕ) = Φ[r − r−1 log(
1

r
− 1

q
)] = p(ϕ), (4)

where r = sign(ϕ̂−ϕ){ˆ̀−`}1/2 is the signed likelihood root and q = (ϕ̂−ϕ)
1/2
ϕϕ (ϕ̂)

is a standardized Wald statistic. And more generally is available for a scalar

parameter in the vector full parameter case with minor modifications; see §11.

The distribution function says where the data s is with respect to the targetted

parameter and does this in statistical % units, and is called the p-value function.

11 Null distribution for an interest parame-

ter

A familiar problem in statistics is to find a statistic and its distribution in order

to assess some hypothesis of interest. There is of course the initial problem of
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finding in the applied context an appropriate variable that is sensitive to assessing

the validity of the hypothesis. And then quite generally with an appropriate

model the familiar sufficiency will be unavailable. As a widely familiar example

consider the possible bending of light passing close to the sun; this has been of

major scientific interest. In 1919 an opportunity arose with a near perfect eclipse

of the sun. Measurements were made at two locations and there was a level of

confirmation of Einstein’s predictions.

For our considerations here we suppose that the relevant variable say y is

available and a satisfactory model is also available say f(y; θ), and that the model

supports a saddlepoint approximation as in (3). Then from likelihood theory it is

known that for a fixed value of an interest parameter say ψ(θ) with dimension say

d there is a conditional distribution that assesses the nuisance parameter say λ of

dimension d, Also from likelihood theory it is known that Laplace integration can

with high accuracy integrate out that condition distribution giving the following

null distribution

h(s;ψ)ds =
ek/n

(2π)p/2
exp {−r2/2}|ϕϕ(ϕ̂)|−1/2|1/2λλ (ϕ̂ψ)|−1/2ds, (5)

where ϕ̂ψ is the constrained maximum likelihood estimator given ψ; the variable

s is now restricted to a p − d dimensional plane through the observed data and

perpendicular to ψ at the constrained maximum likelihood value ϕ̂ψ. And if ψ

is scalar the distribution is available immediately on a line. This gives directly

the variable and its distribution for assessing a value for ψ. A corresponding

distribution function H(s;ψ) = p(ψ) similar to (4) is available and with observed

data inserted gives an observed p-value function for that parameter ψ; see for

example Fraser (2014). This can be viewed as a resolution of the general problem

of inference; see also Fraser (2017).

12 The Bayes direction

As mentioned in §5, many before and Fisher himself Fisher (1956) emphasized

that making up a mathematical prior and using it in the conditional probability

formula, in itself, would not produce probabilities. At most it could produce a

statement that if θ-values had been sourced from the particular prior distribution

201

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 2 (June 2018) 193–205



then there would be descriptive value to the posterior; it would also imply that

with any other prior the conditional probabilities would not in general be valid.

We have of course noted that Laplace was a supporter and that he sought other

principles that could support posteriors in particular frameworks and that he

perhaps was sensing confidence.

There have been many calls that any proposed Bayes posterior should be

calibrated, or be reproducible, or to have repeated sample properties. One im-

plicit supporter of this view was Jeffreys (Jeffreys, 1946) who proposed the prior

π(ϕ)dϕ = |ϕϕ(ϕ)|1/2dϕ for an exponential model as at (2) and (3). This prior

gives a probability measure that has parameterization invariance, a very attrac-

tive property. However later, Jeffreys (1961), (page 182) he noticed that in mul-

tiparameter problems the prior had unattractive properties and for location-scale

and regression models he proposed an alternative that would supply appropriate

degrees of freedom under marginalization. Even this prior proved unreliable; see

Fraser (2011).

More recently for vector interest parameters with regular models, Fraser et al.

(2014) find that only first order inference is generally available by Bayes, but for

a scalar interest parameter say ψ full second order inference is available and is

found fully on the profile contour for that parameter; in addition full second order

information for that scalar parameter is obtained by using the full space Jeffreys

but applying it just on the one dimensional profile contour for that parameter,

a rather surprising but very useful result.

13 Discussion

Some recent conferences entitled BFF and organized by Xiao-Li Meng of Harvard

University are directly concerned with current evolution in statistical inference.

The BFF stands for Bayesian, Fiducial, and Frequentist and the conferences have

a focus on unity in the theory; as a result they directly address current evolution

in theory. In addition, they mention Best Friends Forever, thus emphasizing the

concern for unity in a discipline that has a rather fractious history.

Certainly the Bayes approach provides an early and strong emphasis on theory

and with having a broader base including mathematical and subjective priors in
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addition to true or genuine priors. As such it has grounds for its frequent claim

that it is in some sense a universal approach. The fiducial approach also leads to

a distribution for the parameter based directly on the model and data. And the

frequentist approach too can lead to a distribution for the parameter. Indeed the

fiducial and frequentist approaches are almost equivalent, thus differing just in

their early claims and reactions to those claims, with emphasis on the use of sets

on the pivot space; and of course with who gets credit for confidence. The recent

wide acknowledgement that the Bayes approach needs calibration indicates some

level of convergence, perhaps to the point where Bayes can be viewed as offering

just an exploratory approach to finding confidence, intervals and regions (Fraser

et al., 2014).
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