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We introduce a new three-parameter extension of the exponential distribution called the odd exponentiated
half-logistic exponential distribution. Various of its properties including quantile and generating functions,
ordinary and incomplete moments, mean residual life, mean inactivity time and some characterizations are
investigated. The new density function can be expressed as a linear mixture of exponential densities. The hazard
rate function of the new model can be decreasing, increasing or bathtub shaped. The maximum likelihood is
used for estimating the model parameters. We prove empirically the flexibility of the new distribution using
two real data sets.
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1. Introduction

Recently, there are hundreds of generalized distributions which have several applications from
biomedical sciences, environmental, engineering, financial, among other fields. These applications
have indicated that many data sets following the classical distributions are more often the exception
rather than the reality. Hence, the statisticians have been made a significant progress towards the
generalization of the classical models and their successful applications in applied areas.

Many authors developed generalizations of the exponential (Ex) distribution. For example,
Gupta and Kundu [4] defined the exponentiated Ex (EEx), Nadarajah and Kotz [8] proposed the
beta Ex (BEx), Cordeiro et al. [3] pioneered the Kumaraswamy Ex (KEx) as a special case form
the Kumaraswamy Weibull distribution, Khan et al. [5] introduced the transmuted generalised Ex
(TGEx), Mahdavi and Kundu [6] studied the alpha power Ex (APEx) and Afify et al. [2] studied the
Kumaraswamy transmuted Ex (KTEx) distributions.

Afify et al. [1] proposed a wider class of distributions called the odd exponentiated half-logistic-
G (OEHL-G) family. The cumulative distribution function (CDF) and probability density function
(PDF) of the OEHL-G family are given by

F(x;α,θ ,ξ ) =

1− exp
[
−θG(x;ξ )

Ḡ(x;ξ )

]
1+ exp

[
−θG(x;ξ )

Ḡ(x;ξ )

]


α

(1.1)

and
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f (x;α,θ ,ξ ) =
2αθ g(x,ξ )exp

[
−θG(x;ξ )

Ḡ(x;ξ )

]{
1− exp

[
−θG(x;ξ )

Ḡ(x;ξ )

]}α−1

Ḡ(x;ξ )2
{

1+ exp
[
−θG(x;ξ )

Ḡ(x;ξ )

]}α+1 , (1.2)

respectively, where g(x;ξ ) = dG(x;ξ )/dx, α and θ are positive shape parameters and ξ denotes
the vector of parameters for baseline CDF G. Henceforth, a random variable (rv) with density (1.2)
is denoted by X ∼OEHL-G(α,θ ,ξ ).

The hazard rate function (HRF) of X is given by

h(x;α,θ ,ξ ) =
2αθ

τ(x,ξ )
Ḡ(x;ξ )

{
1+ exp

[
−θG(x;ξ )

Ḡ(x;ξ )

]}−1{
1− exp

[
−θG(x;ξ )

Ḡ(x;ξ )

]}α−1

exp
[

θG(x;ξ )
Ḡ(x;ξ )

]({
1+ exp

[
−θG(x;ξ )

Ḡ(x;ξ )

]}α

−
{

1− exp
[
−θG(x;ξ )

Ḡ(x;ξ )

]}) .
Further information about the OEHL-G can be explored in Afify et al. [1].

In this paper, we propose and study a new three-parameter model called the odd exponentiated
half-logistic exponential (OEHLEx) distribution. Based on the OEHL-G family proposed by Afify
et al. [1], we construct the new OEHLEx model and give a comprehensive description of some
of its mathematical properties. The OEHLEx distribution has some desirable properties like its
capability to model monotone and bathtub hazard rates. We show, using two applications, that the
OEHLEx distribution can provide better fits than 8 other well-known competing extensions of the
Ex distribution.

The rest of the paper is organized as follows. In Section 2, we define the OEHLEx distribution,
provide a useful linear representation for its PDF and give some plots for its PDF and HRF. We
obtain, in Section 3, some mathematical properties of the proposed distribution including quantile
and generating functions, ordinary and incomplete moments, mean residual life, mean inactivity
time and some characterization results. In Section 4, we obtain the maximum likelihood estima-
tors (MLEs) of the model parameters and assess the performance of these estimates via a Monte
Carlo simulation study. In Section 5, we illustrate the importance of the OEHLEx model using two
applications to real data. Finally, in Section 6, we provide some concluding remarks.

2. The OEHLEx distribution

In this section, we define the OEHLEx distribution and provide some plots for its PDF and
HRF. By taking G(x;ξ ) and g(x;ξ ) in (1.2) to be the CDF and PDF of the Ex distribution with PDF
and CDF

g(x;λ ) = λ exp(−λx) and G(x;λ ) = 1− exp(−λx) , (2.1)

respectively, where λ > 0 is a scale parameter.
Then, the PDF of the OEHLEx is given (for x > 0) by

f (x) =
2αθλexp

{
−θ [1−exp(−λx)]

exp(−λx)

}(
1− exp

{
−θ [1−exp(−λx)]

exp(−λx)

})α−1

exp(−λx)
(

1+ exp
{
−θ [1−exp(−λx)]

exp(−λx)

})α+1 , (2.2)
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Fig. 1. PDF plots of the OEHLEx model for selected parameters values.
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Fig. 2. HRF plots of the OEHLEx model for selected parameters values.

where α and θ are positive shape parameters and λ is a positive scale parameter. Hereafter, a rv
with PDF (2.2) is denoted by X ∼OEHLEx(λ ,α,θ ).

The CDF of the OEHLEx distribution reduces to

F(x) =

1− exp
{
−θ [1−exp(−λx)]

exp(−λx)

}
1+ exp

{
−θ [1−exp(−λx)]

exp(−λx)

}
α

. (2.3)

Plots of the OEHLEx PDF and HRF for selected parameter values are shown in Figures 1 and 2,
respectively. The PDF of the OEHLEx distribution can be symmetric, reversed-J shaped, right
skewed or left skewed. The HRF of the OEHLEx distribution can be decreasing, increasing or
bathtub shaped.

Remark 1: The PDF of the OEHLEx distribution can be expressed as a mixture of Ex densities
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f (x) =
∞

∑
m=0

ωm gm+1 (x;(m+1)λ ) , (2.4)

where gm+1 (x;(m+1)λ ) = (m+1)λ exp [−(m+1)λx] is the Ex PDF with scale parameter
(m+1)λ and

ωm = 2αθ

∞

∑
k,l, j,i=0

(−1) j+k+l+m [θ ( j+ i+1)]k

k!(m+1)

×
(
−α−1

i

)(
α−1

j

)(
−k−2

l

)(
k+ l

m

)
.

Based on Remark 1, several mathematical properties of the OEHLEx distribution can be obtained
simply from those properties of the Ex distribution.

Proof.
According to Equation (8) in Afify et al. [1], the PDF of the OEHLEx distribution can be

expressed as

f (x) =
∞

∑
k,l=0

ak,l hk+l+1 (x) , (2.5)

where hk+l+1 (x) = (k+ l +1)λ exp(−λx) [1− exp(−λx)]k+l is the exponentiated Ex density with
power parameter (k+ l +1) and

ak,l = 2αθ

∞

∑
j,i=0

(−1) j+k+l [θ ( j+ i+1)]k

k!(k+ l +1)

(
−α−1

i

)(
α−1

j

)(
−k−2

l

)
.

Applying the generalized binomial series to (2.5), we obtain

f (x) =
∞

∑
m=0

ωm gm+1 (x;(m+1)λ ) .

3. Properties and characterization

In this section, we provide some properties of the OEHLEx distribution including quantile and
generating functions, ordinary and incomplete moments, mean residual life, mean inactivity time
and some characterizations.

Henceforth, let Y be a rv having the Ex distribution in (2.1). Thus, the rth ordinary, incomplete
moments and moment generating function (MGF) of Y are given by

µ
′
r,Y = λ

−r
Γ(r+1) , φr,Y (t) = λ

−r
γ (r+1,λ t) and MY (t) =

λ

λ − t
, t 6= 0,

respectively, where Γ(·) and γ (·, ·) are, respectively, the complete and lower incomplete gamma
functions.
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3.1. Quantile and generating functions

The quantile function (QF) of the OEHLEx distribution follows, by inverting (2.3), as

xu = Q(u) =
−1
λ

log

[
1− − log(1−u

1
α )+ log(1+u

1
α )

θ − log(1−u
1
α )+ log(1+u

1
α )

]
. (3.1)

Based on (3.1), we can obtain a random sample of size n from (2.3), as Xi = Q(Ui), where
Ui ∼Uniform(0,1), i = 1,2, ...,n.

Using (2.4) and the MGF of Y , we can write the MGF of the OEHLEx model as

MX (t) =
∞

∑
m=0

ωm
(m+1)λ

(m+1)λ − t
.

3.2. Ordinary and incomplete moments

The sth ordinary moment of X follows from (2.4) as

µ
′
s =

∞

∑
m=0

ωm [(m+1)λ ]−s
Γ(s+1) .

Using (2.4), the sth incomplete moment of X can be determined as

φs (t) =
∞

∑
m=0

ωm [(m+1)λ ]−s
γ (s+1,(m+1)λ t) .

The first incomplete moment follows from the above equation with s = 1 as

φ1 (t) =
∞

∑
m=0

ωm
γ (2,(m+1)λ t)

[(m+1)λ ]
. (3.2)

3.3. Mean residual life and mean inactivity time

The life expectancy at age t (for t > 0) or mean residual life (MRL) of X is defined by

mX (t) = [1−φ1 (t)]/F(t)− t, (3.3)

where F(.) is the survival function.
By replacing (3.2) in Equation (3.3), the MRL of X can be determined as

mX (t) =
1

F(t)

∞

∑
m=0

ωm
γ (2,(m+1)λ t)

(m+1)λ
− t.

The mean inactivity time (MIT) of X is defined (for t > 0) by

m′X (t) = t− [φ1 (t)/F(t)] .

By inserting (3.2) in the last equation, the MIT of X follows as

m′X (t) = t− 1
F(t)

∞

∑
m=0

ωm
γ (2,(m+1)λ t)

(m+1)λ
.
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3.4. Characterizations

We will use the following two lemmas to prove the characrterization of the OEHLEx distribution.

Assumption A
Suppose that X is an absolutely continuous rv with CDF F(x) and PDF f (x). We assume E(X)

exists and f (x) is differentiable. We assume further

α = Sup{x| f (x)> 0} and β = inf{x| f (x)< 1}.

Lemma 1.
If E(X |X ≤ x) = g(x) f (x)

F(x) , where g(x) is a continuous differentiable function in (α,β ), then

f (x) = ce
∫ x−g′(x)

g(x) dx, c is determined by the condition
∫

β

α
f (x)dx = 1.

Proof.

g(x) =
∫ x

α
u f (u)du
f (x)

.

Thus

∫ x

α

u f (u)du = f (x)g(x).

Differentiating both sides of the above equation, we obtain

x f (x) = f ′(x)g(x)+ f (x)g′(x),

on simplification, we get

f ′(x)
f (x)

=
x−g′(x)

g(x)
.

By integrating both sides of the above equation, we obtain

f (x) = ce
∫ x−g′(x)

g(x) dx, c is determined by the condition
∫

β

α
f (x)dx = 1.

Lemma 2.
If E(X |X ≥ x) = h(x) f (x)

1−F(x) , where h(x) is a continuous differentiable function in (α,β ), then

f (x) = ce
∫
= x+h′(x)

h(x) dx, c is determined by the condition
∫

β

α
f (x)dx = 1.

Proof.

h(x) =
∫

∞

x u f (u)du
f (x)

.

Thus
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∫
∞

x
u f (u)du = f (x)g(x).

Differentiating both sides of the above equation, we obtain

−x f (x) = f ′(x)h(x)+ f (x)h′(x),

on simplification, we get

f ′(x)
f (x)

=−x+h′(x)
h(x)

.

By integrating both sides of the above equation, we obtain

f (x) = ce
∫
− x+h′(x)

h(x) dx
, c is determined by the condition

∫
β

α
f (x)dx = 1.

Theorem 1.
Suppose that X is an absolutely continuous rv with CDF F(x) and PDF f (x). We assume E(X)

exists and f (x) is differentiable. We assume further

0 = Sup{x| f (x)> 0} and ∞ = inf{x| f (x)< 1}.

Then

E(X |X ≤ x) = g(x)
f (x)
F(x)

,

where

g(x) =
∑

∞
m=0 ωm [(m+1)λ ]γ(2,(m+1)λx)

∑
∞
m=0 ωm (m+1)λe−(m+1)λx

, γ(2,s) =
∫ s

0
ue−udu

and

ωm = 2αθ

∞

∑
k,l, j,i=0

(−1) j+k+l+m [θ ( j+ i+1)]k

k!(m+1)

×
(
−α−1

i

)(
α−1

j

)(
−k−2

l

)(
k+ l

m

)
.

If and only if

f (x) =
∞

∑
m=0

ωm (m+1)λ exp [−(m+1)λx] , λ > 0.

Proof.
We have
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g(x) f (x) =
∞

∑
m=0

ωm

∫ x

0
(m+1)λuexp [−(m+1)λu]du

=
∞

∑
m=0

ωm [(m+1)λ ]γ(2,(m+1)λx).

Therefore

g(x) =
∑

∞
m=0 ωm [(m+1)λ ]γ(2,(m+1)λx)

∑
∞
m=0 ωm(m+1)λ exp [−(m+1)λx]

.

Suppose

g(x) =
∑

∞
m=0 ωm [(m+1)λ ]γ(2,(m+1)λx)

∑
∞
m=0 ωm(m+1)λ exp [−(m+1)λx]

,

then

g′(x) = x− ∑
∞
m=0 ωm [(m+1)λ ]γ(2,(m+1)λx)

∑
∞
m=0 ωm(m+1)λ exp [−(m+1)λx]

×

∑
∞
m=0 ωm [(m+1)λ ]2 exp [−(m+1)λx]
∑

∞
m=0 ωm(m+1)λ exp [−(m+1)λx]

= x−g(x)
∑

∞
m=0 ωm [(m+1)λ ]2 e−(m+1)λx

∑
∞
m=0 ωm(m+1)λ exp [−(m+1)λx]

.

Thus

x−g′(x)
g(x)

=
∑

∞
m=0 ωm [(m+1)λ ]2 exp [−(m+1)λx]
∑

∞
m=0 ωm(m+1)λ exp [−(m+1)λx]

.

By Lemma 1, we have

f ′(x)
f (x)

=
∑

∞
m=0 ωm [(m+1)λ ]2 exp [−(m+1)λx]

∑
∞
m=0 ωm [(m+1)λ ]2 exp[−(m+1)λx]
∑

∞
m=0 ωm(m+1)λ exp[−(m+1)λx]

.

On integrating the above expression, we obtain

f (x) = c
∑

∞
m=0 ωm [(m+1)λ ]2 exp [−(m+1)λx]
∑

∞
m=0 ωm(m+1)λ exp [−(m+1)λx]

,

where c is a constant. Using the condition,
∫

∞

0 f (x) = 1, we obtain

f (x) =
∞

∑
m=0

ωm(m+1)λ exp [−(m+1)λx] .

Theorem 2.
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Suppose that X is an absolutely continuous rv with CDF F(x) and PDF f (x). We assume E(X)

exists and f (x) is differentiable. We assume further

0 = Sup{x| f (x)> 0} and ∞ = inf{x| f (x)< 1}.

Then

E(X |X ≥ x) = h(x)
f (x)
F(x)

,

where

h(x) =
∑

∞
m=0 ωm(m+1)λΓ(2,(m+1)λx)

∑
∞
m=0 ωm(m+1)λ exp [−(m+1)λx]

, Γ(2,s) =
∫

∞

s
ue−udu

and ωm is defined before in Theorem 1. If and only if

f (x) =
∞

∑
m=0

ωm(m+1)λ exp [−(m+1)λx] , λ > 0.

Proof.
We have

h(x) f (x) =
∞

∑
m=0

ωm

∫
∞

x
(m+1)λuexp [−(m+1)λu]du

=
∞

∑
m=0

ωm(m+1)λΓ(2,(m+1)λx).

Therefore

h(x) =
∑

∞
m=0 ωm(m+1)λΓ(2,(m+1)λx)

∑
∞
m=0 ωm(m+1)λ exp [−(m+1)λx]

.

Suppose

h(x) =
∑

∞
m=0 ωm(m+1)λΓ(2,(m+1)λx)

∑
∞
m=0 ωm(m+1)λ exp [−(m+1)λx]

,

then

h′(x) = −x− ∑
∞
m=0 ωm(m+1)λΓ(2,(m+1)λx)

∑
∞
m=0 ωm(m+1)λ exp [−(m+1)λx]

×

∑
∞
m=0 ωm [(m+1)λ ]2 exp [−(m+1)λx]
∑

∞
m=0 ωm(m+1)λ exp [−(m+1)λx]

= −x−h(x)
∑

∞
m=0 ωm [(m+1)λ ]2 exp [−(m+1)λx]
∑

∞
m=0 ωm(m+1)λ exp [−(m+1)λx]

.

Thus
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x+h′(x)
(x)

=
−∑

∞
m=0 ωm [(m+1)λ ]2 exp [−(m+1)λx]

∑
∞
m=0 ωm(m+1)λ exp [−(m+1)λx]

.

By Lemma 2, we have

f ′(x)
f (x)

=
∑

∞
m=0 ωm [(m+1)λ ]2 exp [−(m+1)λx]

∑
∞
m=0 ωm[(m+1)λ ]2 exp[−(m+1)λx]
∑

∞
m=0 ωm(m+1)λ exp[−(m+1)λx]

.

On integrating the above expression, we obtain

f (x) = c
∑

∞
m=0 ωm [(m+1)λ ]2 exp [−(m+1)λx]
∑

∞
m=0 ωm(m+1)λ exp [−(m+1)λx]

,

where c is a constant. Using the condition,
∫

∞

0 f (x) = 1, we obtain

f (x) =
∞

∑
m=0

ωm(m+1)λ exp [−(m+1)λx] .

4. Estimation and simulation

Let X1, ...,Xn be a random sample from the OEHLEx distribution with parameters λ , α and θ . Let
ϕ =(λ ,α,θ )ᵀ be the p×1 parameter vector. Then, the log-likelihood function for ϕ is given by

`(ϕ) = n log(2α)+n log(λ )+n log(θ)+λ

n

∑
i=1

xi−θ

n

∑
i=1

[1− exp(−λxi)]

exp(−λxi)

+(α−1)
n

∑
i=1

log
(

1− exp
{
−θ [1− exp(−λxi)]

exp(−λxi)

})
−(α +1)

n

∑
i=1

log
(

1+ exp
{
−θ [1− exp(−λxi)]

exp(−λxi)

})
.

The score vector components, U(ϕ) = ∂`
∂ϕ

= (Uλ ,Uα ,Uθ )
ᵀ, are available with the corresponding

author upon request.
Setting the nonlinear system of equations Uλ =Uα =Uθ = 0 and solving them simultaneously

yields the MLE ϕ̂ . This can be adopted using nonlinear optimization methods such as the quasi-
Newton algorithm to maximize ` numerically.

Now, we conduct a Monte Carlo simulation study to assess the performance of the MLEs of
the unknown parameters for the OEHLEx distribution. The performance of the MLEs is eval-
uated in terms of their average values and mean squared errors (MSEs). The Mathcad pro-
gram is used to generate 1000 samples of the OEHLEx distribution for different sample sizes,
where n = (20,50,100,150) , and for different parameters combinations, where λ =(1,1.5),
α =(0.5,0.75,1.5,1.75,3.5) and θ =(0.35,0.5,0.75,1.5,3.5). The average values of estimates and
MSEs are provided in Table 1. It is noted, from Table 1, that the MSE decreases as the sample size
increases. Thus, the MLE method works very well to estimate the model parameters of the OEHLEx
distribution.
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5. Data analysis

In this section, we illustrate the importance of the OEHLEx distribution using two applications to
real data. The fits of the OEHLEx distribution will be compared with some competitive models
namely: the exponentiated Weibull (EW) Mudholka et al. [7], KEx, KTEx, BEx, gamma (Ga),
TGEx, EEx, APEx and Ex distributions, whose PDFs (for x > 0) are given by

EW: f (x) = βλθxβ−1exp(−λxβ )
[
1− exp(−λxβ )

]θ−1
.

KEx: f (x) = abλexp(−λx) [1− exp(−λx)]a−1 {1− [1− exp(−λx)]a}b−1
.

KTEx: f (x) = abλexp(−λx)[1−θ+2θexp(−λx)]
{[1−exp(−λx)][1+θexp(−λx)]}1−a (1−{[1− exp(−λx)] [1+θexp(−λx)]}a)

b−1
.

BEx: f (x) = λ

B(a,b)exp(−bλx) [1− exp(−λx)]a−1 .

Ga: f (x) = b−a

Γ(a)x
a−1 exp(−x/b) .

TGEx: f (x) = αλexp(−λx) [1− exp(−λx)]α−1×
{

1+θ −2θ [1− exp(−λx)]α
}
.

EEx: f (x) = αλexp(−λx) [1− exp(−λx)]α−1 .

APEx: f (x) = log(α)λexp(−λx)
(α−1) α1−exp(−λx), α > 0,α 6= 1.

The parameters of the above densities are all positive real numbers except for the KTEx and
TGEx distributions for which |θ | ≤ 1.

The competitive models are compared using some goodness-of-fit criteria including Cramér-
Von Mises (W ∗), Anderson-Darling (A∗) and Kolmogorov Smirnov (KS) statistic and its p-value.

The first data set consists of 63 observations of the strengths of 1.5 cm glass fibres, originally
obtained by workers at the UK National Physical Laboratory. The data are reported in Smith et
al. [10]. The second data set consists of 100 observations of breaking stress of carbon fibres (in
Gba) as reported in Nichols and Padgett [9]

Tables 2 and 3 list the W ∗, A∗, KS, its p-value, MLEs and their standard errors (SEs) (in paren-
theses) for the fitted OEHLEx distribution and other competitive models.

The figures in these tables show that the OEHLEx distribution has the lowest values for all
goodness-of-fit statistics among all fitted distributions.

The histogram of the two data sets, and the estimated CDF, SF and PP plots for the OEHLEx
distribution are displayed in Figures 3 and 4, respectively. The plots in Figures 3 and 4 reveal that
the OEHLEx distribution has a close fit to both data sets.
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Table 1. Average values of the estimates and the corresponding MSEs for the OEHLEx distribution.

n Parameters Average Values MSEs
λ α θ λ α θ λ α θ

20 1.0 0.50 0.50 0.910 0.581 0.721 0.041 0.039 0.131
50 1.058 0.517 0.528 0.124 0.012 1.049
100 1.013 0.515 0.462 0.084 0.006 1.018
150 0.966 0.516 0.631 0.044 0.004 0.135
20 1.0 0.50 1.50 1.096 0.548 1.548 0.078 0.027 0.571
50 1.020 0.523 1.535 0.242 0.009 0.546
100 1.028 0.510 1.579 0.133 0.005 0.498
150 1.043 0.503 1.546 0.062 0.003 0.415
20 1.0 0.50 3.50 1.088 0.552 3.519 0.060 0.029 0.804
50 1.125 0.515 3.586 0.278 0.008 2.716
100 1.046 0.508 3.570 0.077 0.003 1.168
150 1.025 0.503 3.538 0.039 0.002 0.731
20 1.0 1.50 0.50 1.102 1.657 0.647 0.160 0.390 0.766
50 1.052 1.592 0.589 0.086 0.280 0.199
100 1.033 1.525 0.522 0.036 0.103 0.069
150 1.019 1.510 0.515 0.021 0.060 0.043
20 1.0 3.50 0.50 1.140 4.099 0.591 0.144 4.993 0.362
50 1.031 3.973 0.578 0.051 2.879 0.148
100 1.032 3.579 0.505 0.022 0.928 0.050
150 1.027 3.515 0.495 0.014 0.473 0.030
20 1.5 0.75 0.35 1.538 0.913 0.661 0.425 0.215 0.901
50 1.562 0.790 0.452 0.216 0.040 0.143
100 1.490 0.787 0.428 0.101 0.020 0.062
150 1.482 0.772 0.403 0.059 0.012 0.034
20 1.5 0.75 0.75 1.786 0.830 0.897 0.886 0.121 1.413
50 1.612 0.776 0.868 0.288 0.030 0.405
100 1.584 0.755 0.761 0.124 0.013 0.137
150 1.558 0.757 0.751 0.066 0.009 0.089
20 1.5 1.75 0.50 1.616 1.954 0.666 0.304 0.551 0.766
50 1.558 1.815 0.563 0.127 0.199 0.140
100 1.514 1.811 0.557 0.081 0.131 0.068
150 1.502 1.785 0.550 0.064 0.110 0.051
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Table 2. The W ∗, A∗, KS (P-value in parentheses) and estimates (SEs in parentheses) for data set I.

Distribution W ∗ A∗ KS Estimates (SEs)
OEHLEx 0.1357 0.7698 0.1228 2.4615 1.5777 0.0346
(λ ,α,θ ) (0.2982) (0.4798) (0.5047) (0.0334)
EW 0.1999 1.1118 0.1462 7.2846 0.0194 0.6712
(β ,λ ,θ ) (0.1351) (1.4868) (0.0210) (0.2209)
KEx 0.2687 1.4724 0.1615 6.8786 2553.2883 0.2374
(a,b,λ ) (0.0749) (1.1075) (5216.1254) (0.1228)
KTEx 0.2719 1.4899 0.1632 5.4138 386.4380 -0.6552 0.4231
(a,b,θ ,λ ) (0.0698) (2.2810) (515.1351) (0.4995) (0.1449)
BEx 0.5687 3.1188 0.2164 17.4493 134.5357 0.0812
(a,b,λ ) (0.0055) (3.0818) (243.8003) (0.1388)
Ga 0.5684 3.1174 0.2164 17.4396 11.5737
(a,b) (0.0055) (3.0780) (2.0723)
TGEx 0.6992 3.8266 0.2123 31.1539 -0.6957 2.9097
(α,θ ,λ ) (0.0068) (11.1417) (0.1787) (0.2579)
EEx 0.7862 4.2869 0.2290 31.3495 2.6116
(α,λ ) (0.0027) (9.5201) (0.2380)
APEx 0.6417 3.5241 0.2235 1920499 2.0711
(α,λ ) (0.0037) (23726.92) (0.0989)
Ex 0.5702 3.1270 0.4179 0.6636
(λ ) (0.0000) (0.0836)
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Fig. 3. Fitted PDF, CDF, SF and PP plots of the OEHLEx model for data set I.
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Table 3. The W ∗, A∗, KS (P-value in parentheses) and estimates (SEs in parentheses) for data set II.

Distribution W ∗ A∗ KS Estimates (SEs)
OEHLEx 0.0682 0.4011 0.0639 0.2669 2.7131 2.1000
(λ ,α,θ ) (0.8088) (0.1042) (0.7322) (1.4127)
KTEx 0.0685 0.4007 0.0645 2.6891 19.4945 0.227 -0.6237
(a,b,λ ,θ ) (0.7995) (3.2607) (38.547) (0.194) (1.7109)
KEx 0.0699 0.4092 0.0647 3.2780 63.2257 0.1134
(a,b,λ ) (0.7969) (0.8372) (217.67) (0.1823)
EW 0.0704 0.4132 0.0645 2.4083 0.0929 1.3175
(β ,λ ,θ ) (0.8003) (0.5981) (0.0908) (0.5905)
BEx 0.1483 0.7589 0.0935 5.9605 34.5462 0.0615
(a,b,λ ) (0.3461) (0.8218) (61.141) (0.1021)
Ga 0.1480 0.7572 0.0934 5.9526 2.2708
(a,b) (0.3471) (0.8193) (0.3261)
APEx 0.1843 0.9396 0.0954 34031.74 1.0996
(α,λ ) (0.3228) (12329.98) (0.0495)
TGEx 0.1875 0.9581 0.0966 6.18734 1.1019 -0.6837
(α,λ ,θ ) (0.3078) (1.9283) (0.0947) (0.2793)
EEx 0.2267 0.1859 0.1077 7.7882 1.0132
(α,λ ) (0.1962) (1.4962) (0.0875)
Ex 0.1493 0.7643 0.3206 0.3815
(λ ) (0.0000) (0.0381)
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Fig. 4. Fitted PDF, CDF, SF and PP plots of the OEHLEx model for data set II.
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6. Conclusions

We propose a new odd exponentiated half-logistic exponential (OEHLEx) distribution with
two extra shape parameters. The OEHLEx density function can be expressed as a linear mixture
of exponential densities. We provide some of its mathematical properties including explicit expres-
sions for the quantile and generating functions, ordinary and incomplete moments, mean residual
life and mean inactivity time. The model parameters have been estimated by the maximum like-
lihood estimation method. We assess the performance of the maximum likelihood estimators via
a simulation study. Two applications illustrate that the proposed distribution provides consistently
better fits than other competitive models generated using well-known classes.
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