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Abstract 

Marshall and Olkin [Biometrika 84, 641-652, 1997] introduced a method for constructing a new distribution by 

adding a new parameter, called tilt parameter, to a parent distribution. It is observed that adding this parameter leads 

to a more flexible model than the parent model. In this paper, different estimators for tilt parameter as a major 

parameter are presented. Their performances are compared using Monte Carlo simulations. Hypothesis testing and 

interval estimation of tilt parameter using Rao score test is discussed. 

Keywords: Tilt parameter; Marshall-Olkin distribution; Maximum likelihood estimation; Maximum spacing 

estimation; Least-squares estimation; coverage probability; score test; Insulating fluid data. 
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1. Introduction 

Let 𝑋 be a random variable with cumulative distribution function G( )x  and probability density functiong( )x . 

Ref. 11  proposed a method for adding a new parameter to a distribution family. If ( )G x  denote the survival 

function of X then survival function of Marshall-Olkin family of distributions defined by: 

 

 

(1.1) 

 

where 𝑥, 𝛼 > 0 and 1 = − . 

 

If 𝑋 is a random variable with survival function (1.1) we write 𝑋~𝑀𝑂(𝛼). In literature, 𝛼 is called tilt 

parameter.𝐺(𝑥) may be have some parameters. The probability density function and the cumulative distribution 

function is related by (1.1) are given by: 

 

                                                                       𝑓(𝑥, 𝛼) =
𝛼𝑔(𝑥)

(1−𝛼̅𝐺̅(𝑥))2                                                                (1.2) 

and 

( )
( , )

1 ( )

G x
F x

G x
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
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=
−
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                                                                        𝐹(𝑥, 𝛼) =
𝐺(𝑥)

1−𝛼̅𝐺̅(𝑥)
                                                                   (1.3) 

 

Several new distributions have been introduced from this method. Adding a new parameter leads to a more 

flexible model than baseline model. A generalized version of a distribution often has nice structural properties 

in application. For example the exponential distribution has a fixed failure rate function and so this distribution 

doesn't have a good fitting to the data in many reliability applications. But a generalized exponential model, 

such as Marshall-Olkin exponential, has a failure rate with different shapes for different values of parameters. 

In Marshall-Olkin distribution family, tilt parameter makes this nice property. This is the motivation for 

considering statistical inferences of tilt parameter in this paper.   

Maximum likelihood and moment estimation of tilt parameter for a specific parent distribution have been 

studied by several authors. For further discussions see Ref. 11, Ref. 5, Ref. 6 and Ref. 15. Ref. 8  presented 

MLE and Bayesian estimation of tilt parameter in a general class of Marshall-Olkin distribution. Also they 

obtained some estimators for reliability of a system by this distribution. Ref. 2  considered different estimators 

of parameters of Marshall-Olkin exponential distribution. In addition Ref. 7  found the estimation of reliability 

from Marshall-Olkin extended Lomax distribution. 

In this paper we will discuss several methods for estimating tilt parameter in Marshall-Olkin distribution that 

will be denoted by ( )MO  . Also we will discuss hypothesis testing to tilt parameter. The rest of paper is 

organized as follow: In Section 2, the maximum likelihood estimation is investigated. In Section 3, the 

estimation of tilt parameter is discussed by using maximum spacing method. Least square and weighted least 

square estimators are discussed in Section 4. Hypothesis testing based on score test statistic and confidence 

interval for tilt parameter are proposed in Section 5. In Section 6, simulation results and comparison of 

estimators are provided. Also the coverage probabilities of confidence intervals and Rao Score test statistic are 

obtained. In a real dataset the statistical inferences about a particular distribution in Marshall-Olkin family of 

distributions, are discussed in section 7. 
 

2. Maximum Likelihood Estimation 

Let 
1
, ... nX X  be a random sample of size n from ( )MO  . The likelihood function ( )L   can be written as 

2

1 1

( )
( ) f( , )

1 ( )

n n
i

i
i i

i

g x
L x

G x


 

= =

= =

− 
 

   

And log-likelihood function is given by 

                                                   
 

1 1

( ) ln( ) ln ( ) 2 ln G( ) ( )
n n

i i i
i i

n g x x G x  
= =

= + − +                                    (2.1) 

So 
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
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                        (2.2) 

and 
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
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The fisher information of 𝛼 is given by 
2

2

2 2

( )
( ) 2

1 ( )

n G X
I E nE

G X


  


= − = −

 −
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  

   
 

Using change of variables: 
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(2.3)                 

 

For example, let the parent distribution be exponential with survival function  

 

                                                          (2.4) 

 

Substituting (2.4) in (1.1), we have Marshall-Olkin extended exponential that is noted by Ref. 11. The 

probability density function of this distribution is given by 
 

                                          (2.5) 

 

As customary, a random variable X with the density function (2.5) will be denoted by ( , )MOEE   . In this 

paper we focused on inference about tilt parameter, but since it is not reasonable and practical to consider one 

parameter for the new model and considering all other parameters to be known involved in the model, we 

suppose 𝛼 𝑎𝑛𝑑 𝜆 in  ( , )MOEE    are unknown. Thus by calculating log-likelihood function of (2.5) in a 

random samples, we have 

                                                                     1

1
2 0

1i

n

x
i

n
e 

  =


= − =

 + −
                                                        (2.6) 

and  
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x en
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


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  
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
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 −
                                             (2.7) 

These equations should be solved simultaneously to obtain maximum likelihood estimators. Statistical software 

can be used to solve them numerically using iterative methods. 

 

3. Maximum Spacing Estimation 

Maximum spacing (MSP) method is introduced by Ref. 3  as an alternative to maximum likelihood method. 

Ref. 13 derived MSP method from an approximation of the Kullback-Leibler divergence (KLD). Again let  

1,... nx x  be a random sample from a distribution function ( , )F x  . Suppose ( , )f x   is the probability density 

function. Kullback-Leibler divergence between ( , )F x   and 
0

( , )F x  is given by 

0

0

0

( , )
( , ) ( , ) log

( , )

f x
H F F f x dx

f x 





=

 
 
 

  

The KLD is 0 if and only if 
0

( , ) ( , )F x F x =  for all x. For estimating 
0

  a perfect method should make the 

divergence between the model and the true distribution as small as possible. In applications, this can be checked 

by estimating 
0

( , )H F F
 

by 

                                                                   

0

1

( , )1
log

( , )

n
i

i i

f x
n f x



=

 
 
 


                                                                       (3.1) 

So by minimizing (3.1) with respect to  , the estimator of 
0

  can be found, that is the well-known MLE. But 

in some continuous distribution,
 

log ( ), 1,...,if x i n= , is not bounded above. Ref. 13 suggested another 

approximation of the KLD, namely  

( ) , , 0
xx e xG 


−

= 

 
2

f( , ) , 0, , 0
1

x

x

e
x x

e


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−
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−
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where 
(1) (2) ( )

... nx x x    are the order statistics of random sample, and 
(0) ( 1)

( , ) 0 , ( , ) 1nF x F x 
+

  .  

( ) ( 1)
( , ) ( , ) , 1,..., 1i iF x F x i n 

−
− = + , are known as first-order spacings of 

(0) ( 1)
( , ), , ( , )nF x F x 

+
. 

The estimator that obtained by minimizing (3.2) is called MSP estimator of  
0

 . In regular problems, minimizing 

(3.2) is approximately equivalent to maximizing the log-likelihood function.  It is clear that minimizing (3.2) is 

equivalent to maximizing:  

                                                  
( )

1

( ) ( 1)

1

( ) log ( , ) ( , )
n

i i
i

M F X F X  
+

−

=

= −                                                            (3.3) 

where  is an unknown parameter. Thus maximum spacing estimator can obtained by minimizing  𝑀(𝜃) with 

respect to . 

When the likelihood function of    is unbounded or in distributions with a parameter-dependent lower bound 

such as three-parameter log-normal, weibull and gamma, the MSP estimator (MSPE) has been shown to have 

better performance than the maximum likelihood estimator (MLE). For more details, see Ref. 13 and Ref. 1. 

Ref. 4 showed that in small samples, MSPE is more efficient than the MLE.  Based on Ref. 4, using (3.3) instead 

of a maximizing log-likelihood, three different problems can be solved as the same time. (i) We can test a 

proposed model is correct or not. (ii) An estimation of an unknown parameter can be obtained and (iii) By using 

approximation theory we can obtain a confidence region for unknown parameter. In section 6, we obtained 

MSPEs, when X has a Marshall-Olkin exponential distribution. 

 

4. Least Squares and Weighted Least Squares Estimation  

The least squares and weighted least squares estimators were originally introduced by Ref. 16 to estimate the 

parameters of Beta distributions. It is intuitively obvious and has long been known that: 

                                            
( )( )

( )
1

i

i
E F X

n
=

+
     and   

( ) 2

( 1)
( ( ))

( 1) ( 2)
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i n i
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n n
− +

=
+ +

                                       (4.1) 

Thus the least squares estimator (LSE) of an unknown parameter can be obtained by minimizing  
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2
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1
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i
i

i
F X
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−
+

                                                                  (4.2) 

With respect to unknown parameter. 

Similarly the weighted least squares estimator (WLSE) can be obtained by minimizing 

 

 

                                                                (4.3) 

 
and 

 

 

                                         (4.4) 

         

with respect to 𝛼 and 𝜆, respectively. 
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5. Hypothesis Testing and Confidence Intervals 

For completeness purposes, in this section, we briefly discuss hypothesis testing for null hypothesis 
0

: 1H  =  

against
1

: 1H   , in a Marshall-Olkin family of distribution when the parent distribution doesn't have any 

unknown parameter. There are different method for this purpose based on likelihood function, such as 

likelihood ratio test, score test and Wald test. Because of some advantage, we use score test for testing 
0

H . In 

addition we propose two approximate confidence intervals for tilt parameter. 

5.1. Score Test  for 𝜶 = 𝟏 

 Suppose ( )  is log-likelihood function and ( )
( )U







=


. So test statistic based on score test is given by  

                                                                                                                                                                         

(5.1) 

 

 

Where  ( )I   is the fisher information of tilt parameter. 

( )U   and ( )I  is presented in section two . Under null hypothesis, S has asymptotically chi-square distribution 

with 1 degree of freedom, so the null hypothesis is rejected when 2

1,
S


 , where   is significant level.  In 

Marshall-Olkin family of distributions when all parameters of parent distribution are known, the score test 

statistic using (2.2) and (2.3) is: 
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G


 =

= −
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 

                                                       (5.2) 

And under null hypothesis 
 

 
                                                        (5.3) 

 
The generalization version of (5.1) is 

                                                                                                                                                 

                                                             (5.4) 

 

where θ  is restricted maximum likelihood estimator of the vector of parameters, θ under 
0

H and ( )I θ is the 

fisher information matrix of  θ .  

Under null hypothesis, test statistic in (5.4) has asymptotically chi-square distribution with k degree of freedom 

when k is the number of components of θ .The score test statistic is useful because it is simple to compute and 

depends only on estimates of parameters under null hypothesis. Also the score test has the same local efficiency 

as the Likelihood Ratio test. Furthermore the distribution of score test statistic is not affected by parameters 

being on the boundary of the parameter space under null hypothesis. For further discussion about score tests 

see Ref. 4. 

Again, let 𝑋~𝑀𝑂𝐸𝐸(𝛼, 𝜆) . It is interested to test  
0

: 1H  =   against 
1

: 1H   with score test method. At the 

first suppose   is known, so from (5.3), the null hypothesis is rejected when     
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
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But when   be unknown parameter, using (2.6) and (2.7) we have 
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log( )di   is dilogarithm function of  . 

So score test statistic for  
0

: 1H  =  in presence   as a nuisance parameter is given by (5.4) where ( )ˆ1,=θ  and 

1ˆ

X
 = . (Restricted MLE for   under null hypothesis) 

5.2. Confidence Interval for 𝜶 

In this section we assume all parameters expect than tilt parameter in Marshall-Olkin extended distribution be 

known. The normal approximation of the MLE of 𝛼 can be used for constructing approximate confidence 

intervals. Under conditions that are fulfilled for the parameters in the interior of the parameter space, we have  

                                                                          

2
3

ˆ ( , )
a N

n


 ⎯⎯→                                                                   (5.7) 

Where 
a⎯⎯→  indicate approximately distributed and  is tilt parameter of Marshall-Olkin extended 

distribution. So one can use (5.7) to obtain confidence interval for unknown parameters.  

On the other hand for obtaining confidence interval for 𝛼, it is interested to use score test statistic that is 

discussed in previous subsection. According to (5.1) the approximate confidence interval for tilt parameter, 

when there is no any other unknown parameter in the model is obtained from: 

 

 

                                     (5.8) 

 
 

Equation (5.8) can be used for obtaining confidence interval for tilt parameter in Marshall-Olkin extended 

exponential distribution. 

6. Simulations 

It is presented different estimators of tilt parameter that discussed in previous sections. In this section we 

compare the performance of these estimators by using Monte Carlo simulations. The biases and root mean 

square errors (RMSEs) of different estimators of   and 𝜆 in a Marshall-Olkin extended exponential distribution 

  22 1 2

1,1 /2 1, /2
( ) ( ) 1P U I

 
    

−

−
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are presented in Table 1. These criteria were computed by simulating samples of size n = 10 and 30, each sample 

replicated 5000 times. The values of the 𝛼 are 0.25; 1 and 2.5. In all cases we take 1 = .The different shapes 

of density of 𝑀𝑂𝐸𝐸(𝛼, 𝜆) are shown in Fig 1. We can observe that when 𝜆 is fixed, the skewness of density 

gets to small value with increasing 𝛼.  

 

Fig 1. Probability density function for MOEE with different values of 𝜶 when 𝝀 = 𝟏. 

 
From Table 1 and 2,it is observed that the MSP performs the best among all methods to estimates 𝑎 for small 

values of 𝑎 since 𝑎 is a shape parameter and based on figure 1 we can see that in these cases the density is 

skewed. As noted before MSP method have good performance when the distribution is skewed or heavy-tailed. 

For estimating 𝜆, the LS method is the best for small values of 𝛼. But when 𝛼 = 2.5 the ML method is the best 

among all methods. In addition with increasing sample size, the performance of the MSPEs gets to the MLEs.  

Table 1. biases and RMSEs for different estimators of parameters of  

Marshall-Olkin Exponential when 𝝀=1 and n=10. 

𝜶 Estimators bias   RMSE  

          𝛼̂ 𝜆̂          𝛼̂ 𝜆̂ 

0.25 MLE 0.2165 0.4239  0.1898 0.5616 

 MSPE 0.0056 -0.2104  0.1086 0.6506 

 LSE 0.7524 -0.0020  0.8521 0.2820 

 WLSE 0.0243 -0.1797  0.1292 0.7192 

       

1 MLE 0.3232 0.1930  0.5220 0.2652 

 MSPE -0.1402 -0.2099  0.5051 0.3254 

 LSE 0.0025 -0.0012  0.2889 0.2826 

 WLSE -0.0658 -0.1782  0.5572 0.3560 

       

2.5 MLE -0.7504 -0.0914  0.7827 0.0838 

 MSPE -1.1159 -0.2977  1.7021 0.1795 

 LSE -1.4984 0.0024  2.5261 0.2882 

 WLSE -1.0617 -0.3055  1.5987 0.1867 
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Table 2. biases and RMSEs for different estimators of parameters of  

Marshall-Olkin Exponential when 𝝀=1 and n=30. 

𝜶 Estimators bias   RMSE  

  𝛼̂ 𝜆̂  𝛼̂ 𝜆̂ 

0.25 MLE 0.1068 0.2480  0.0581 0.3455 

 MSPE -0.0169 -0.1553  0.0386 0.3530 

 LSE 0.7535 -0.0059  0.8497 0.2780 

 WLSE 0.0315 -0.0249  0.0582 0.4571 

       

1 MLE 0.2059 0.0920  0.3395 0.1210 

 MSPE -0.0893 -0.1233  0.2875 0.1309 

 LSE 0.0001 0.0024  0.2878 0.2879 

 WLSE 0.0577 -0.0290  0.3496 0.1478 

       

2.5 MLE -0.6633 -0.1020  0.5447 0.0346 

 MSPE -0.8444 -0.1892  0.9223 0.0656 

 LSE -1.5011 0.0061  2.5312 0.2869 

 WLSE -0.7684 -0.1797  0.7737 0.0596 

 

 
In table 3, For different values of sample size and 𝛼, we determined the coverage probabilities of the 90%, 95% 

and 99% confidence intervals for 𝛼 by two methods: Confidence interval based on an asymptotic normal pivotal 

quantity that is obtained from  (5.7) and confidence interval based on score test method that is denoted  in (5.8). 

In all cases we assume 𝑋~𝑀𝑂𝐸𝐸(𝛼, 𝜆) . 

 
Table 3. Coverage probabilities (in %) of confidence interval based on maximum  

likelihood (ML) and score test  (SC)  methods for   when 1 = . 

 

 

 

Sample size 

 

 

𝜶 

90%  CI 

 

ML        SC 

95% CI 

 

ML         SC 

99% CI 

 

ML        SC 

n=10 0.25 

1 

2.5 

88.39 

87.71 

88.06 

90.71 

90.22 

90.58 

90.94 

90.79 

90.32 

95.35 

94.96 

95.10 

94.42 

94.38 

94.72 

99.09 

99.08 

99.15 

        

n=30 0.25 

1 

2.5 

89.80 

89.22 

89.45 

90.39 

89.91 

90.11 

93.43 

93.84 

93.33 

94.89 

95.50 

94.77 

96.89 

96.99 

97.08 

99.20 

99.05 

99.07 

        

n=50 0.25 

1 

2.5 

90.20 

90.22 

89.94 

90.38 

89.80 

89.83 

93.94 

94.15 

93.88 

94.97 

95.16 

94.88 

97.95 

97.99 

97.72 

99.12 

99.18 

98.95 

 

From Table 3, it is clear that the SC confidence interval (based on score test statistic) seems to have considerably 

higher coverage probabilities compared to the ML confidence interval that is based on asymptotic distribution 

of MLE. 
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7. Real Data 

For further discussions, we analyze times to breakdown (in minutes) of an insulating fluid subjected to high 

voltage stress, which was reported by Ref. 12 (p. 462). We use group 3 of data for our goal.  

 

 

 
Fig. 2 Estimated densities of the MOEE and exponential distributions 

 

Plots of the estimated density functions of Marshall-Olkin extended exponential and exponential models based 

on MLEs are given in Fig 2. It is evident that the MOEE model provides a better fit than the old model. 

 
Table 4. MLEs and the measures -2LogLik and AIC 

 Estimates   Statistics  

distribution 𝛼 𝜆  -2LogLik AIC 

MOEE 4.7352 1.1510  29.1428 33.14 

Exponential 1 0.5720  31.1694 33.16 

 

In Table 4, the MLEs of the model parameters and some statistics, such as negative log-likelihood and Akaike 

Information Criterion (AIC), are listed. From this table, the MOEE distribution has lower -2LogLik and AIC 

values than Exponential, and so it could be chosen as the better model. In addition the Score statistic for testing 

the hypothesis 
0

: 1H  = against 
1

: 1H   or equally 
0

: ( )H Exp   against 
1

: ( , )H MOEE    is 33.0387 (

2

2,0.0533.0387>5.99= ) Thus the null hypothesis is rejected at 5% significant level. 

8. Conclusions 

Ref. 11 proposed a simple generalization of a baseline distribution function by adding a tilt parameter α> 0 in 

order to obtain a larger class of distribution functions, which contains the parent distribution when α = 1. In this 

paper we investigated statistical inference about tilt parameter. We calculated different estimator for tilt 

parameter and studied their performances. Also we discussed about hypothesis testing and interval estimation 

of tilt parameter based on score test statistic. Finally in a real dataset, we fitted a Marshall-Olkin extended 

exponential and obtain MLEs of its parameters. 
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