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This paper considers simple tree order restriction in 2×k cohort study and provides a consistent test in which the
usual multiple comparison test statistics are modified by using the characteristic roots of a consistent estimator
of the associated correlation matrix. The relevant performance measures of the proposed test are obtained
and are compared numerically with existing competitors via simulation. It is shown that the proposed test is
comparable to or better than the competitors in terms of type I error rate and power. Finally, data study illustrates
the use of such a test.
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1. Introduction

Testing the equality of multiple mortality rates from different exposure categories against an ordered
alternative occurs frequently in epidemiological studies. For example, consider the cohort study by
Gupta and Mehta (2000) in which the age adjusted mortality rates among women in Mumbai, India
using mishri (roasted, powdered form of tobacco used to clean teeth) and betel nut are, respectively,
12.3 and 12.6 per 1000 per annum, whereas such rate for control group is 9.9. Hence, it would
be reasonable to assume the simple tree restriction π1 ≤ π2,π3, where π1, π2 and π3 represent,
respectively, the risks of dying among women for the control group, for those who use mishri and
for those who chew betel nuts. In general, if H : π1 = π2 = · · · = πk represents no restriction on
mortality rates for k exposure categories, H can be tested against the patterned alternative Hst −H,
where Hst : π1 ≤ π2,π3, . . .πk.

∗corresponding author.
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Several tests are available in the literature for testing H against Hst −H. These are, for example,
based on restricted maximum likelihood estimator (RMLE), multiple comparison procedures and
non parametric kernels (see, for example, Fligner and Wolfe, 1982; Magel, 1988; Desu et al., 1996).
While detecting order restrictions on binomial probabilities based on a 2× k cohort study, multi-
nomial allocation probabilities corresponding to the exposure levels play an important role. The
existing tests to detect simple tree order restriction in a 2× k table, where allocation probabilities
are unbalanced, occasionally fail to attain the nominal level for small values of π1. Our aim is to
propose a multiple comparison consistent test using the characteristic roots of a consistent estimator
of the associated correlation matrix based on the multinomial allocation probabilities, in which this
short fall has been overcome.

Among the RMLE based approaches, the work on confidence interval estimation subject to
order restriction (Hwang and Peddada, 1994) is based on modified generalised isotonic regression
estimator (MGIRE). A number of testing procedures are obtained following MGIRE (see, for exam-
ple, Peddada et al., 2001; Peddada and Haseman, 2006; Teoh et al., 2008). In this paper we choose
an MGIRE based test as competitor and is referred to as the MGIRE test. Other RMLE based pro-
cedures to detect simple tree alternative are, for example, due to Wright and Tran (1985), Conaway
et al. (1991), Singh et al. (1993), Futschik and Pflug (1998), Tsai (2004). Multiple comparison pro-
cedure (Bretz et al., 2001, 2003; Genz, 2004; Schaarschmidt et al., 2008; Hothorn et al., 2009),
based on normal and binary responses, is proposed as a method in which the cut off points of the
related tests are obtained from the distribution functions of multivariate normal and multivariate t
distributions and are provided numerically through the R-packages mnormt and mvtnorm. In our
setting we also choose one of such tests under binary response as another competitor and call the
corresponding test as the GBH (Genz-Bretz-Hothorn) test. Besides these multiple comparison tests
some single contrast tests are available to detect order restriction among binomial probabilities (
see, for example, Leuraud and Benichou, 2001, 2004; Bretz and Hothorn, 2003; Bandyopadhyay
and Chakrabarti, 2013 and the references there in). Our numerical computation shows that for small
sample size the MGIRE and GBH tests often fail to attain the nominal level under unbalanced allo-
cation as compared to that under balanced allocation. The proposed test overcomes such shortfall
and increases its power locally.

The outline of the paper is as follows. Section 2 provides the data layout and notations. Section
3 contains some asymptotics and formulation of the proposed test. Section 4 describes competitors
of the proposed test. Simulation results on size and power of the tests are given in Section 5. Section
6 contains data study. The paper concludes with some discussions in Section 7, followed by some
technical details in Appendices A and B.

2. Data layout and notations

Consider a cohort study on n individuals, where the dichotomous response variable Y , indicating
survival status, is recorded for the exposure X consisting of the levels x1,x2, . . . ,xk, measured in a
nominal scale, satisfying x1 . x2,x3, . . . ,xk. Let p j = P(X = x j)> 0, the chance of occurrence of the
exposure level x j, j = 1,2, . . . ,k with ∑

k
j=1 p j = 1, and π j =P(Y = 1|X = x j)= 1−P(Y = 0|X = x j),

the mortality rate at x j, j = 1,2, . . . ,k. Define n j = #(X = x j) as the number of individuals observed
at x j and s j = #(Y = 1|X = x j) as the disease count at x j, j = 1,2, . . . ,k, where n = ∑

k
j=1 n j.

Let us write nnnT = (n1,n2, . . . ,nk), pppT = (p1, p2, . . . , pk) and πππT = (π1,π2, . . . ,πk). Evidently, the
distribution of nnn is multinomial on k categories with index n and parameter ppp. Further (s1,s2, . . . ,sk),
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conditioning on nnn, constitutes k−independent binomial random variables, where s j follows binomial
distribution with index n j and parameter π j, j = 1,2, . . . ,k. In order to understand the simple tree
order of the mortality rates at different exposure levels, H is tested against Hst −H.

In the subsequent discussions, p̂ j and π̂ j are used to denote, respectively, the observed pro-
portions of individuals and successes at x j, where p̂ j = n j/n and π̂ j = s j/n j. Then the overall
proportion of success is obtained by π̂ = 1

n ∑
k
j=1 n jπ̂ j = p̂ppT

π̂ππ , where p̂ppT = (p̂1, p̂2, . . . , p̂k) and
π̂ππ

T = (π̂1, π̂2, . . . , π̂k). If n j vanishes for some j = 1,2, . . . ,k, dirichlet prior is used to choose
p̂ j =

n j+1/k
n+1 , j = 1,2, . . . ,k. Similarly, if π̂ is found to be 0 or 1 for a specific sample, we choose

π̂ =
∑

k
j=1 n jπ̂ j+1/2

n+1 by use of beta prior.

3. Proposed test and related asymptotic results

A naive test, analogous to Dunnett’s procedure (1955), can be constructed through Bonferroni’s
correction in which H is rejected at level α against Hst −H if and only if

T = max

t j =

√
n(π̂ j− π̂1)√

π̂(1− π̂)( 1
p̂1
+ 1

p̂ j
)
, j = 2,3, . . . ,k


exceeds τα/(k−1), where τα is the (1−α)th quantile of standard normal distribution, 0 < α < 1.
Such a test is referred to as the T -test. In this paper a modification of the T -test is proposed by
standardizing ttt = (t2, t3, . . . , tk)T through the estimators of the characteristic roots of the correlation
matrix of ttt. Towards such modification, H is expressed in terms of multiple contrasts of πππ by

H : Cπππ = 000,

where C(k−1)×k = (−111k−1 eee1 eee2 . . . eeek−1) with eee j, j = 1,2, . . . ,k−1 as (k−1) component indepen-
dent unit vectors and 111k−1 =∑

k−1
j=1 eee j. Then, H is rejected against Hst−H if and only if H j is rejected

against Ha
j for at least one j, where H j : π1 = π j and Ha

j : π1 < π j, j = 2,3, . . . ,k. Furthermore, an
upper tail test based on t j is appropriate for the testing problem (H j,Ha

j ), j = 2,3, . . . ,k. Hence,
combining all such component tests, the resulting test becomes the T -test. Now, we consider the
proposed modification.

Modifying T :
It is not difficult to see that, for 0 < p j < 1, j = 1,2, . . . ,k, as n→ ∞,

√
n(π̂ j−π j)√

π̂ j(1−π̂ j)
p̂ j

, j = 1,2, . . . ,k


converges in distribution to Nk(000, I), the k-variate normal distribution with mean vector 000 and unit
dispersion matrix I. That means, for large n,

√
n(π̂ππ−πππ)

a∼ Nk(000,Σ(p̂pp)),

where

Σ(p̂pp) = Diag
(

π1(1−π1)

p̂1
,
π2(1−π2)

p̂2
, . . . ,

πk(1−πk)

p̂k

)
,
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which under H reduces to π(1− π)Diag(p̂−1
1 , p̂−1

2 , . . . , p̂−1
k ), and the notation “un

a∼ vn” is used
to mean that asymptotic distributions of the random variables un and vn are same. Therefore, the
asymptotic distribution of ttt, shown in Appendix A, is Nk−1(000,R(ppp)), under H, where R(ppp) is the
correlation matrix with elements

ri j(ppp) = 1 if 1≤ i = j ≤ k−1,

=

√
pi+1 p j+1

(p1 + pi+1)(p1 + p j+1)
if 1≤ i 6= j ≤ k−1.

Let λ j = λ j(ppp)> 0, j = 1,2, . . . ,k−1 be the characteristic roots of R(ppp) and www jjj be the unit norm
characteristic vector corresponding to λ j, j = 1,2, . . . ,k−1. Then, setting W = (www111 www222 . . . wwwk−1),
it follows that

W T R(ppp)W = Λ(ppp) = Diag(λ1,λ2, . . . ,λk−1).

Hence, there exists a positive definite matrix R1/2(ppp) for which, as n→ ∞,

R−1/2(ppp)ttt→ Nk−1(000, I)

in distribution under H, where

R−1/2(ppp) =WΛ
−1/2(ppp)W T , Λ

−1/2(ppp) = Diag

(
1√
λ1

,
1√
λ2

, . . . ,
1√
λk−1

)
.

Since, R−1/2(p̂pp)→ R−1/2(ppp) in probability, we get, as n→ ∞,

tttm = (tm
2 , t

m
3 , . . . , t

m
k )

T = R−1/2(p̂pp)ttt→ Nk−1(000, I) (1)
in distribution under H, and hence T can be modified by

Tm = max{tm
2 , t

m
3 , . . . , t

m
k }. (2)

As usual, an upper tail test based on Tm would be appropriate. Such a test can be described by the

critical region

w : Tm > Tmα , (3)
where, for given α : 0 < α < 1, Tmα is obtained approximately from the relation

limn→∞ PH{Tm ≤ Tmα}= 1−α,

which, by use of (1) and 2), yields the approximate relation

{Φ(Tmα)}k−1 = 1−α (4)
with Φ(.) as the distribution function of standard normal variable. Thus the test (referred to as the

Tm-test), given by (3) and (4), is asymptotically level α test for the testing problem (H,Hst−H) and
is a modification of the T -test. It is shown (see Appendix B) that the test is consistent.
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4. Competitors

MGIRE test
Here components of πππ are estimated ( subject to a general order restriction) by

π̃1 = min

{
∑

l
j=1 p̂ jπ̂ j

∑
l
j=1 p̂ j

, l = 1,2, . . . ,k

}
and

π̃ j = max{π̃1, π̂ j}, j = 2,3, . . . ,k.

Then, incorporating Bonferroni’s corrections, the test, described by the critical region

TMGIRE = max


√

n(π̃ j− π̃1)√
π̂(1− π̂)( 1

p̂ j
+ 1

p̂1
)
, j = 2,3, . . . ,k

> τα/(k−1),

is asymptotically level α test for the testing problem (H,Hst−H) and is used as a competitor of the
proposed tests. From Appendix B, it is not difficult to see that under any πππ ,

1√
n

TMGIRE →max{θ j, j = 1,2, . . . ,k−1}

in probability, which is ‘zero’ or positive according as πππ ∈ H or πππ ∈ Hst −H. This implies that the
MGIRE test is consistent for testing H against πππ ∈ Hst −H.

GBH test
Here H is rejected at level α against Hst −H if and only if

TGBH = max

t j =

√
n(π̂ j− π̂1)√

π̂(1− π̂)( 1
p̂1
+ 1

p̂ j
)
, j = 2,3, . . . ,k


exceeds the 100(1−α) equi-percentage point, ck−1,R(p̂pp),1−α , of Nk−1(000,R(p̂pp)), the approximated
null distribution of ttt. The consistency of this test for testing H against πππ ∈Hst−H can be established
by the same technique as in the previous test.

5. Simulation study

We perform a simulation study with hundred thousand replications taking k = 3 and, for the purpose
of illustration, the nominal level (α) is chosen at 0.05. The proposed test and the competitors are
compared with respect to both empirical type I error rate and empirical power. Empirical type I
error rate (power) of a test is computed by that proportion of hundred thousand replications of the
experiment under H (H−Hst), in which the test statistic exceeds the 0.95th quantile of its asymptotic
null distribution.

For a 2× k cohort data, setting ppp = p̂pp and the common success probability under H at π = π̂ ,
100,000 tables, similar to the data, are generated. If the bootstrap percentile points of the simulated
null distributions of the statistics agree with the percentile points of the asymptotic null distributions
of the respective statistics, P-values of the tests are obtained using the approximate null distributions,
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otherwise P-values are determined by bootstrapping (See, for example, Efron and Tibshirani (1993),
Noreen (1989) and Romano (1988, 1989) for details) in which the proportion of cases the test
statistics, evaluated from all such 100,000 tables, exceed the respective observed values obtained
from the data set.

Similarly, if the empirical type I error rates do not agree with the nominal level, the powers of
the corresponding test are evaluated using empirical cut-off point (0.95th quantile of the simulated
null distribution of the test statistic) instead of the approximate cut-off point.

The simulation study is performed for different choices of n and ppp. For illustration, we
choose n = 100,200,300,400 and 500 for both balanced (p1 = p2 = p3) and unbalanced sit-
uations. As most of the cohort studies indicate highly unbalanced situations , we take ppp =

(0.9,0.05,0.05) (more allocation towards control) and ppp = (0.1,0.45,0.45) (less allocation towards
control) for the present computation. For balanced allocation ρ = r12(ppp) is equal to 0.5 and for
ppp = (0.9,0.05,0.05), (0.1,0.45,0.45) ρ is, respectively, equal to 0.053 and 0.818. π is chosen from
{0.1,0.3,0.5} in order to ensure the conformity of the type I error rates to the nominal level. The
empirical powers of the tests are obtained under the following cases of the parametric configura-
tions:

Case A: πππ lying in the boundary of the alternative region, such as: π1 = π3 < π2.
Case B: πππ is well within the alternative region, such as: (B1) π1 < π2 = π3, (B2) π1 < π3 < π2.

For revealing the behaviour of the tests under Case A, we choose πππ = (0.1,0.2,0.1), and that under
Case B, we choose πππ = (0.1,0.2,0.2) and (0.1,0.3,0.2) for (B1) and (B2), respectively.

Simplification: k = 3.

Setting ρ̂ =
√

p̂2 p̂3
(p̂1+p̂2)(p̂1+p̂3)

, we get R(p̂pp) =
(

1 ρ̂

ρ̂ 1

)
, which gives

Λ(p̂pp) =
(

1− ρ̂ 0
0 1+ ρ̂

)
and W =

(
1/
√

2 1/
√

2
−1/
√

2 1/
√

2

)
,

and hence

R−1/2(p̂pp) =
1
2

 1√
1+ρ̂

+ 1√
1−ρ̂

1√
1+ρ̂
− 1√

1−ρ̂

1√
1+ρ̂
− 1√

1−ρ̂

1√
1+ρ̂

+ 1√
1−ρ̂

 .

Consequently, Tm becomes

Tm = max{a(ρ̂)t2 +b(ρ̂)t3,b(ρ̂)t2 +a(ρ̂)t3} ,

where
a(ρ̂) = 1

2(
1√
1+ρ̂

+ 1√
1−ρ̂

) and b(ρ̂) = 1
2(

1√
1+ρ̂
− 1√

1−ρ̂
).

Result:
Computation of Type I error rate
In Table 1, the entries, showing maximum departure of the type I error rates from the nominal level
(more than 10 %departure from the nominal level) for different choices of π and n, are marked in
bold faces. The table shows that under balanced allocation and unbalanced allocation probabilities
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(0.9,0.05,0.05) the Tm test and its competitors, except one exception, have similar behaviour. Again,
unlike the Tm test, type I error rates of the MGIRE test do not agree with the nominal level under
the allocation probabilities (0.1,0.45,0.45). However, in this situation, the GBH test maintains the
nominal level except for small values of π. The more the increase in ρ , more is the deviation of the
type I error rates for the MGIRE and GBH tests from the nominal level.

Table 1. Empirical type I error rate: Tm, MGIRE and GBH tests (ααα= 0.05).

π n Tm MGIRE GBH Tm MGIRE GBH Tm MGIRE GBH
ppp = (1/3,1/3,1/3) ppp = (0.09,0.05,0.05) ppp = (0.1,0.45,0.45)

100 0.058 0.052 0.053 0.099 0.099 0.098 0.039 0.004 0.009
200 0.055 0.050 0.052 0.083 0.083 0.083 0.404 0.014 0.026

0.1 300 0.055 0.052 0.053 0.082 0.082 0.081 0.045 0.023 0.036
400 0.053 0.050 0.050 0.077 0.077 0.076 0.045 0.029 0.040
500 0.054 0.051 0.051 0.073 0.074 0.073 0.048 0.028 0.041
100 0.053 0.049 0.051 0.070 0.069 0.070 0.050 0.029 0.043
200 0.050 0.049 0.051 0.063 0.064 0.063 0.047 0.033 0.043

0.3 300 0.052 0.052 0.053 0.060 0.061 0.060 0.047 0.033 0.044
400 0.049 0.049 0.050 0.061 0.061 0.061 0.050 0.034 0.046
500 0.049 0.047 0.048 0.059 0.060 0.060 0.048 0.033 0.046
100 0.052 0.049 0.050 0.042 0.042 0.043 0.053 0.040 0.053
200 0.049 0.048 0.049 0.048 0.048 0.048 0.050 0.039 0.051

0.5 300 0.050 0.050 0.051 0.048 0.049 0.048 0.049 0.038 0.050
400 0.049 0.046 0.047 0.052 0.052 0.052 0.052 0.040 0.051
500 0.051 0.048 0.050 0.048 0.049 0.048 0.051 0.037 0.049

Computation of empirical power
Table 2 and Table 3 show, respectively, the empirical powers of the tests under Case A and Case B.
For each of the given choices of ppp, πππ and n maximum powers are marked in bold faces.
Case A:

Table 2. Empirical power: Tm,MGIRE and GBH tests (ααα= 0.05, Case A).

πππ n Tm MGIRE GBH Tm MGIRE GBH Tm MGIRE GBH
ppp = (1/3,1/3,1/3) ppp = (0.09,0.05,0.05) ppp = (0.1,0.45,0.45)

100 0.261 0.230 0.240 0.116 0.115 0.116 0.280 0.240 0.243
200 0.461 0.397 0.407 0.166 0.162 0.164 0.463 0.289 0.290

(0.1,0.2,0.1) 300 0.623 0.549 0.561 0.292 0.290 0.292 0.620 0.384 0.384
400 0.745 0.668 0.679 0.267 0.264 0.267 0.735 0.463 0.463
500 0.832 0.764 0.772 0.307 0.306 0.307 0.813 0.535 0.537

Table 2 shows the empirical powers of all the tests for the given choices of πππ lying in a boundary of
parametric space under Hst−H. For the given choices of n, the Tm test is found to be more powerful
than the MGIRE and GBH tests under both balanced and unbalanced allocation probabilities. Based
on this empirical power comparison, an approximate ordering of the tests is Tm, GBH, MGIRE, in
which the Tm-test is the best in terms of having maximum empirical power.

Case B: Table 3 shows numerical computations of empirical power under both Case B1 and Case
B2. Here, under Case B1, the GBH test is found to be be more powerful than the MGIRE and Tm
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Table 3. Empirical power: Tm,MGIRE and GBH tests (ααα= 0.05, Case B).

π n Tm MGIRE GBH Tm MGIRE GBH Tm MGIRE GBH
ppp = (1/3,1/3,1/3) ppp = (0.09,0.05,0.05) ppp = (0.1,0.45,0.45)

100 0.245 0.302 0.312 0.175 0.178 0.178 0.137 0.259 0.260
200 0.422 0.507 0.521 0.265 0.268 0.270 0.206 0.311 0.312

(0.1,0.2,0.2) 300 0.572 0.667 0.681 0.346 0.351 0.352 0.282 0.397 0.398
400 0.683 0.775 0.788 0.404 0.409 0.411 0.347 0.492 0.493
500 0.792 0.866 0.874 0.486 0.490 0.494 0.392 0.563 0.564
100 0.519 0.566 0.581 0.285 0.285 0.287 0.374 0.468 0.469
200 0.810 0.847 0.854 0.444 0.448 0.450 0.629 0.634 0.635

(0.1,0.3,0.2) 300 0.939 0.957 0.960 0.577 0.580 0.582 0.803 0.777 0.779
400 0.980 0.989 0.990 0.683 0.688 0.690 0.903 0.879 0.880
500 0.995 0.997 0.998 0.759 0.763 0.765 0.951 0.905 0.926

tests under both balanced and unbalanced allocation probabilities. Based on this empirical power
comparison, like Case A, an approximate ordering of the tests is GBH, MGIRE, Tm. Under Case
B2 for balanced allocation probabilities and allocation probabilities (0.9,0.05,0.05) ordering of the
tests with respect to empirical powers remains unaltered with an insignificant variation among the
empirical powers. Under allocation probabilities (0.1,0.45,0.45) corresponding to Case B2 , for
n ≥ 300, Tm test is found to be more powerful, whereas ordering of the tests remains same as in
Case B1 for n = 100 and 200.

6. Data study

Example 1:
The data, given in Table 4, are extracted from the cohort study (Gupta and Mehta, 2000) on the risk
of mortality among tobacco users in Mumbai, India,

Table 4. Mortality risk by use of mishri and betel nut among
women.

category frequency p̂pp mortality risk (π̂ππ)
Control 64414 0.5225 0.0099
Mishri 56515 0.4585 0.0123
Betel nut 2343 0.0190 0.0126
total 123272 1 -

where users are classified gender-wise into smoking groups (smoking cigarette and bidi (tobacco
hand rolled in temburni leaf and flaked)) and consuming smokeless tobacco (mishri, betel quid,
betel nut, etc). Table 4 shows the risk of mortality among women in Mumbai from the use of
mishri and betel nut. Here, the P-values of all the tests, proposed and competitors, are obtained by
bootstrapping. In addition the bootstrap 0.95th percentile points of the simulated null distributions
of such test statistics are obtained at various sample sizes. Furthermore, setting ppp = p̂pp and πππ = π̂ππ ,
another 100,000 tables are generated for those sample sizes. From each such tables the test statistics
are computed. Finally, the powers of the tests are obtained as the proportions of cases in which such
test statistics exceed the respective bootstrap percentile points. Estimated P-values and powers of
the tests corresponding to Example 1 are given in Table 5.
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Table 5. P-values and powers of the tests obtained by
bootstrapping .

P-value/Power Tm MGIRE GBH
P-value 0.00020 0.00025 0.00025
Power
n = 123272 0.979 0.980 0.981
n = 50000 0.722 0.728 0.735
n = 25000 0.434 0.442 0.451
n = 10000 0.208 0.209 0.216
n = 5000 0.139 0.134 0.139
n = 1000 0.075 0.073 0.074

It is observed (Table 5) that all the tests, proposed and competitors, strongly reject the null hypoth-
esis of no difference among the risks of mortality, where the Tm test has the least P-value. For
different choices of n in Table 5 we see that empirical powers of the Tm,GBH and MGIRE tests are
approximately equal. For n > 5,000, an approximate ordering of the tests with respect to empirical
power is GBH, MGIRE, Tm, in which the GBH-test is the best in terms of having maximum power.
However, for n≤ 5,000, the ordering becomes Tm, GBH, MGIRE.

Example 2:
All the tests are applied to another data set (Graubard and Korn, 1987) relating to the effect of mater-
nal alcoholism on congenital sex organ malformation among infants. The information on alcohol
consumption is collected from would-be mothers after the first trimester and the malformations
among infants are recorded following childbirth. Alcohol consumption categories are classified as
average number of drinks per day. The data set is summarized in Table 6.

Table 6. Risk of infant’s sex organ malformation for maternal alcoholism.

average number of drinks/day frequency of mothers p̂pp risk of malformation
< 1 31616 0.9706 0.0027

1−2 793 0.0243 0.0063
> 2 165 0.0051 0.0121

Total 32574 1 –

Adopting the similar technique, as used in Example 1, P-values and powers of the tests are deter-
mined and exhibited in Table 7.

Table 7. P-values and powers of the tests obtained
by resampling.

P-value/Power Tm MGIRE GBH
P-value 0.062 0.062 0.062
Power
n = 32574 0.629 0.631 0.633
n = 10000 0.323 0.323 0.323
n = 5000 0.264 0.228 0.228
n = 1000 0.130 0.130 0.130
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Table 6 shows that p̂1 is almost unity and p̂2 is significantly larger than p̂3. Thus, the sam-
ple corresponds to an extremely unbalanced situation. Here, as the P-values suggest, all the
Tm, GBH, MGIRE tests strongly reject the null hypothesis. The Tm test is found to be more powerful
than its competitors for n≤ 10,000.

7. Discussion

The failure of the type I error rate to attain the nominal level occurs more frequently in the MGIRE
and GBH tests than in the Tm test under unbalanced allocation probabilities. On the boundary of the
parameter space under Hst−H, that is, under Case A, the Tm test is found to be locally more powerful
than its competitors. Power of the Tm test in this case becomes significantly more as compared to that
of its competitors with the increase in the value of ρ. Thus, for unbalanced allocation probabilities
yielding high values of ri j(ppp)′s, the Tm test can be preferred for its agreement of type I error rate
with the nominal level.
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Appendix A

Asymptotic Distribution under H
Setting

M(p̂pp) = Diag

(√
p̂1 p̂2

p̂1 + p̂2
,

√
p̂1 p̂3

p̂1 + p̂3
, . . . ,

√
p̂1 p̂k

p̂1 + p̂k

)
,

it follows that, under H, for large n,

√
nM(p̂pp)Cπ̂ππ

a∼ Nk−1 (000,ΣH(p̂pp)) ,

where

ΣH(p̂pp) = M(p̂pp)CΣ(p̂pp)CT MT (p̂pp) = π(1−π)R(p̂pp)

with R(p̂pp) given by Section 3 when ppp is estimated by p̂pp. Hence the statistic ttt is identified as

ttt =
√

n
π̂(1− π̂)

M(p̂pp)Cπ̂ππ.

Now, using the fact that p̂pp→ ppp in probability, it follows that, under H,

ttt→ Nk−1(000,R(ppp))

in distribution as n→ ∞.
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Appendix B

Consistency
First, we prove the following result.
Result B.1: Let A= (aaa1aaa2 · · ·aaad) be a positive definite symmetric matrix, and ααα = (α1,α2, . . . ,αd)

T

be a vector of non-negative elements with ααα 6= 000. Then

max{aaaT
jjj ααα, j = 1,2, . . . ,d}> 0.

Proof: Assume that the assertion is false. Then, by the given conditions, we have αααT Aααα ≤ 0. But
this is a contradiction as A is positive definite. Hence the result follows.
Next, writing θθθ = (θ1,θ2, . . . ,θk−1)

T with

θ j =
(π j+1−π j)√

π(1−π)

√
p1 p j+1

p1 + p j+1
, j = 1,2, . . . ,k−1,

we can find a vector valued function ggg = (g1,g2, . . . ,gk−1)
T of θθθ such that as n→ ∞,

1√
n

tttm =
1√
n

R−
1
2 (p̂pp)ttt =

1√
π̂(1− π̂)

R−
1
2 (p̂pp)M(p̂pp)Cπ̂ππ

converges to

ggg(θθθ) = R−
1
2 (ppp)θθθ

in probability for any πππ, where M(p̂pp) is defined in Appendix A. It is obvious that θθθ = 000 when πππ ∈H
and θ j ≥ 0, j = 1,2, . . . ,k−1 with θθθ 6= 000 when πππ ∈ Hst −H. Furthermore, as n→ ∞,

1√
n

Tm→ µ(θθθ) = max{g j(θθθ), j = 1,2, . . . ,k−1}

in probability, where g j(θθθ) = aaaT
jjj θθθ with aaa j as the jth column of the symmetric positive definite

matrix R−
1
2 (ppp). Hence, by use of Result B.1, we get

µ(θθθ) = 0 if πππ ∈ H

> 0 if πππ ∈ Hst −H.

This implies that the proposed test, described by (3), is consistent for testing H against any πππ under
Hst −H.
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