

# A New Test for Simple Tree Alternative in a 2 x k Table

Parthasarathi Chakrabarti

Department of Statistics, R.K.M. Residential College, Narendrapur, Kolkata 700 103, India partho.stat@gmail.com

Uttam Bandyopadhyay\*

Department of Statistics, University of Calcutta 35 Ballygunge Circular Road, Kolkata 700 019, India ubandyopadhyay08@gmail.com

"Tgegkxgf "42"Qevqdgt "4238"
"Ceegr vgf "53"O c { "4239"

This paper considers simple tree order restriction in  $2 \times k$  cohort study and provides a consistent test in which the usual multiple comparison test statistics are modified by using the characteristic roots of a consistent estimator of the associated correlation matrix. The relevant performance measures of the proposed test are obtained and are compared numerically with existing competitors via simulation. It is shown that the proposed test is comparable to or better than the competitors in terms of type I error rate and power. Finally, data study illustrates the use of such a test.

Keywords: order restriction; simple tree; empirical size; empirical power; bootstrap.

2000 Mathematics Subject Classification: 62F30, 62G10

### 1. Introduction

Testing the equality of multiple mortality rates from different exposure categories against an ordered alternative occurs frequently in epidemiological studies. For example, consider the cohort study by Gupta and Mehta (2000) in which the age adjusted mortality rates among women in Mumbai, India using mishri (roasted, powdered form of tobacco used to clean teeth) and betel nut are, respectively, 12.3 and 12.6 per 1000 per annum, whereas such rate for control group is 9.9. Hence, it would be reasonable to assume the simple tree restriction  $\pi_1 \leq \pi_2, \pi_3$ , where  $\pi_1, \pi_2$  and  $\pi_3$  represent, respectively, the risks of dying among women for the control group, for those who use mishri and for those who chew betel nuts. In general, if  $H: \pi_1 = \pi_2 = \cdots = \pi_k$  represents no restriction on mortality rates for k exposure categories, H can be tested against the patterned alternative  $H_{st} - H$ , where  $H_{st}: \pi_1 \leq \pi_2, \pi_3, \dots \pi_k$ .

<sup>\*</sup>corresponding author.



Several tests are available in the literature for testing H against  $H_{st} - H$ . These are, for example, based on restricted maximum likelihood estimator (RMLE), multiple comparison procedures and non parametric kernels (see, for example, Fligner and Wolfe, 1982; Magel, 1988; Desu et al., 1996). While detecting order restrictions on binomial probabilities based on a  $2 \times k$  cohort study, multinomial allocation probabilities corresponding to the exposure levels play an important role. The existing tests to detect simple tree order restriction in a  $2 \times k$  table, where allocation probabilities are unbalanced, occasionally fail to attain the nominal level for small values of  $\pi_1$ . Our aim is to propose a multiple comparison consistent test using the characteristic roots of a consistent estimator of the associated correlation matrix based on the multinomial allocation probabilities, in which this short fall has been overcome.

Among the RMLE based approaches, the work on confidence interval estimation subject to order restriction (Hwang and Peddada, 1994) is based on modified generalised isotonic regression estimator (MGIRE). A number of testing procedures are obtained following MGIRE (see, for example, Peddada et al., 2001; Peddada and Haseman, 2006; Teoh et al., 2008). In this paper we choose an MGIRE based test as competitor and is referred to as the MGIRE test. Other RMLE based procedures to detect simple tree alternative are, for example, due to Wright and Tran (1985), Conaway et al. (1991), Singh et al. (1993), Futschik and Pflug (1998), Tsai (2004). Multiple comparison procedure (Bretz et al., 2001, 2003; Genz, 2004; Schaarschmidt et al., 2008; Hothorn et al., 2009), based on normal and binary responses, is proposed as a method in which the cut off points of the related tests are obtained from the distribution functions of multivariate normal and multivariate t distributions and are provided numerically through the R-packages mnormt and mvtnorm. In our setting we also choose one of such tests under binary response as another competitor and call the corresponding test as the GBH (Genz-Bretz-Hothorn) test. Besides these multiple comparison tests some single contrast tests are available to detect order restriction among binomial probabilities see, for example, Leuraud and Benichou, 2001, 2004; Bretz and Hothorn, 2003; Bandyopadhyay and Chakrabarti, 2013 and the references there in). Our numerical computation shows that for small sample size the MGIRE and GBH tests often fail to attain the nominal level under unbalanced allocation as compared to that under balanced allocation. The proposed test overcomes such shortfall and increases its power locally.

The outline of the paper is as follows. Section 2 provides the data layout and notations. Section 3 contains some asymptotics and formulation of the proposed test. Section 4 describes competitors of the proposed test. Simulation results on size and power of the tests are given in Section 5. Section 6 contains data study. The paper concludes with some discussions in Section 7, followed by some technical details in Appendices A and B.

## 2. Data layout and notations

Consider a cohort study on n individuals, where the dichotomous response variable Y, indicating survival status, is recorded for the exposure X consisting of the levels  $x_1, x_2, \ldots, x_k$ , measured in a nominal scale, satisfying  $x_1 \lesssim x_2, x_3, \ldots, x_k$ . Let  $p_j = P(X = x_j) > 0$ , the chance of occurrence of the exposure level  $x_j$ ,  $j = 1, 2, \ldots, k$  with  $\sum_{j=1}^k p_j = 1$ , and  $\pi_j = P(Y = 1 | X = x_j) = 1 - P(Y = 0 | X = x_j)$ , the mortality rate at  $x_j$ ,  $j = 1, 2, \ldots, k$ . Define  $n_j = \#(X = x_j)$  as the number of individuals observed at  $x_j$  and  $s_j = \#(Y = 1 | X = x_j)$  as the disease count at  $x_j$ ,  $j = 1, 2, \ldots, k$ , where  $n = \sum_{j=1}^k n_j$ .

Let us write  $\mathbf{n}^T = (n_1, n_2, \dots, n_k)$ ,  $\mathbf{p}^T = (p_1, p_2, \dots, p_k)$  and  $\mathbf{\pi}^T = (\pi_1, \pi_2, \dots, \pi_k)$ . Evidently, the distribution of  $\mathbf{n}$  is multinomial on k categories with index n and parameter  $\mathbf{p}$ . Further  $(s_1, s_2, \dots, s_k)$ ,



conditioning on n, constitutes k-independent binomial random variables, where  $s_j$  follows binomial distribution with index  $n_j$  and parameter  $\pi_j$ , j = 1, 2, ..., k. In order to understand the simple tree order of the mortality rates at different exposure levels, H is tested against  $H_{st} - H$ .

In the subsequent discussions,  $\hat{p}_j$  and  $\hat{\pi}_j$  are used to denote, respectively, the observed proportions of individuals and successes at  $x_j$ , where  $\hat{p}_j = n_j/n$  and  $\hat{\pi}_j = s_j/n_j$ . Then the overall proportion of success is obtained by  $\hat{\pi} = \frac{1}{n} \sum_{j=1}^k n_j \hat{\pi}_j = \hat{p}^T \hat{\pi}$ , where  $\hat{p}^T = (\hat{p}_1, \hat{p}_2, \dots, \hat{p}_k)$  and  $\hat{\pi}^T = (\hat{\pi}_1, \hat{\pi}_2, \dots, \hat{\pi}_k)$ . If  $n_j$  vanishes for some  $j = 1, 2, \dots, k$ , dirichlet prior is used to choose  $\hat{p}_j = \frac{n_j + 1/k}{n+1}$ ,  $j = 1, 2, \dots, k$ . Similarly, if  $\hat{\pi}$  is found to be 0 or 1 for a specific sample, we choose  $\hat{\pi} = \frac{\sum_{j=1}^k n_j \hat{\pi}_j + 1/2}{n+1}$  by use of beta prior.

### 3. Proposed test and related asymptotic results

A naive test, analogous to Dunnett's procedure (1955), can be constructed through Bonferroni's correction in which H is rejected at level  $\alpha$  against  $H_{st} - H$  if and only if

$$T = \max \left\{ t_j = \frac{\sqrt{n}(\hat{\pi}_j - \hat{\pi}_1)}{\sqrt{\hat{\pi}(1 - \hat{\pi})(\frac{1}{\hat{p}_1} + \frac{1}{\hat{p}_j})}}, \ j = 2, 3, \dots, k \right\}$$

exceeds  $\tau_{\alpha/(k-1)}$ , where  $\tau_{\alpha}$  is the  $(1-\alpha)^{\text{th}}$  quantile of standard normal distribution,  $0 < \alpha < 1$ . Such a test is referred to as the *T*-test. In this paper a modification of the *T*-test is proposed by standardizing  $\mathbf{t} = (t_2, t_3, \dots, t_k)^T$  through the estimators of the characteristic roots of the correlation matrix of  $\mathbf{t}$ . Towards such modification, H is expressed in terms of multiple contrasts of  $\boldsymbol{\pi}$  by

$$H: C\boldsymbol{\pi} = \mathbf{0},$$

where  $C^{(k-1)\times k}=(-\mathbf{1}_{k-1}\ \boldsymbol{e}_1\ \boldsymbol{e}_2\dots\ \boldsymbol{e}_{k-1})$  with  $\boldsymbol{e}_j,\ j=1,2,\dots,k-1$  as (k-1) component independent unit vectors and  $\mathbf{1}_{k-1}=\sum_{j=1}^{k-1}\boldsymbol{e}_j$ . Then, H is rejected against  $H_{st}-H$  if and only if  $H_j$  is rejected against  $H_j^a$  for at least one j, where  $H_j:\pi_1=\pi_j$  and  $H_j^a:\pi_1<\pi_j,\ j=2,3,\dots,k$ . Furthermore, an upper tail test based on  $t_j$  is appropriate for the testing problem  $(H_j,H_j^a),\ j=2,3,\dots,k$ . Hence, combining all such component tests, the resulting test becomes the T-test. Now, we consider the proposed modification.

# Modifying T:

It is not difficult to see that, for  $0 < p_i < 1, j = 1, 2, ..., k$ , as  $n \to \infty$ ,

$$\left\{rac{\sqrt{n}(\hat{oldsymbol{\pi}}_j-oldsymbol{\pi}_j)}{\sqrt{rac{\hat{oldsymbol{\pi}}_j(1-\hat{oldsymbol{\pi}}_j)}{\hat{oldsymbol{
ho}}_j}}},\; j=1,2,\ldots,k
ight\}$$

converges in distribution to  $N_k(\mathbf{0}, I)$ , the k-variate normal distribution with mean vector  $\mathbf{0}$  and unit dispersion matrix I. That means, for large n,

$$\sqrt{n}(\hat{\boldsymbol{\pi}} - \boldsymbol{\pi}) \stackrel{a}{\sim} N_k(\boldsymbol{0}, \Sigma(\hat{\boldsymbol{p}})),$$

where

$$\Sigma(\hat{m{p}}) = \mathrm{Diag}\left(rac{\pi_1(1-\pi_1)}{\hat{p_1}}, rac{\pi_2(1-\pi_2)}{\hat{p}_2}, \ldots, rac{\pi_k(1-\pi_k)}{\hat{p}_k}
ight),$$



which under H reduces to  $\pi(1-\pi)Diag(\hat{p}_1^{-1},\hat{p}_2^{-1},\ldots,\hat{p}_k^{-1})$ , and the notation " $u_n \stackrel{a}{\sim} v_n$ " is used to mean that asymptotic distributions of the random variables  $u_n$  and  $v_n$  are same. Therefore, the asymptotic distribution of t, shown in Appendix A, is  $N_{k-1}(\mathbf{0},R(\mathbf{p}))$ , under H, where  $R(\mathbf{p})$  is the correlation matrix with elements

$$r_{ij}(\mathbf{p}) = 1$$

$$= \sqrt{\frac{p_{i+1}p_{j+1}}{(p_1 + p_{i+1})(p_1 + p_{j+1})}} \quad \text{if } 1 \le i = j \le k - 1,$$

Let  $\lambda_j = \lambda_j(\mathbf{p}) > 0$ , j = 1, 2, ..., k-1 be the characteristic roots of  $R(\mathbf{p})$  and  $\mathbf{w_j}$  be the unit norm characteristic vector corresponding to  $\lambda_j$ , j = 1, 2, ..., k-1. Then, setting  $W = (\mathbf{w_1} \ \mathbf{w_2} \ ... \ \mathbf{w_{k-1}})$ , it follows that

$$W^T R(\boldsymbol{p})W = \Lambda(\boldsymbol{p}) = \text{Diag}(\lambda_1, \lambda_2, \dots, \lambda_{k-1}).$$

Hence, there exists a positive definite matrix  $R^{1/2}(\mathbf{p})$  for which, as  $n \to \infty$ ,

$$R^{-1/2}(\mathbf{p})\mathbf{t} \to N_{k-1}(\mathbf{0},I)$$

in distribution under H, where

$$R^{-1/2}(\boldsymbol{p}) = W\Lambda^{-1/2}(\boldsymbol{p})W^T, \ \Lambda^{-1/2}(\boldsymbol{p}) = \operatorname{Diag}\left(\frac{1}{\sqrt{\lambda_1}}, \frac{1}{\sqrt{\lambda_2}}, \dots, \frac{1}{\sqrt{\lambda_{k-1}}}\right).$$

Since,  $R^{-1/2}(\hat{\boldsymbol{p}}) \to R^{-1/2}(\boldsymbol{p})$  in probability, we get, as  $n \to \infty$ ,

$$\boldsymbol{t}_{m} = (t_{2}^{m}, t_{3}^{m}, \dots, t_{k}^{m})^{T} = R^{-1/2}(\hat{\boldsymbol{p}})\boldsymbol{t} \to N_{k-1}(\boldsymbol{0}, I)$$
(1)

in distribution under H, and hence T can be modified by

$$T_m = \max\{t_2^m, t_3^m, \dots, t_k^m\}. \tag{2}$$

As usual, an upper tail test based on  $T_m$  would be appropriate. Such a test can be described by the critical region

$$w: T_m > T_{m\alpha}, \tag{3}$$

where, for given  $\alpha$ :  $0 < \alpha < 1$ ,  $T_{m\alpha}$  is obtained approximately from the relation

$$\lim_{n\to\infty} P_H\{T_m\leq T_{m\alpha}\}=1-\alpha,$$

which, by use of (1) and 2), yields the approximate relation

$$\{\Phi(T_{m\alpha})\}^{k-1} = 1 - \alpha \tag{4}$$

with  $\Phi(.)$  as the distribution function of standard normal variable. Thus the test (referred to as the

 $T_m$ -test), given by (3) and (4), is asymptotically level  $\alpha$  test for the testing problem  $(H, H_{st} - H)$  and is a modification of the T-test. It is shown (see Appendix B) that the test is consistent.



### 4. Competitors

#### MGIRE test

Here components of  $\pi$  are estimated (subject to a general order restriction) by

$$ilde{\pi}_1 = \min \left\{ rac{\sum_{j=1}^l \hat{p}_j \hat{\pi}_j}{\sum_{j=1}^l \hat{p}_j}, \ l=1,2,\ldots,k 
ight\}$$

and

$$\tilde{\pi}_j = \max{\lbrace \tilde{\pi}_1, \hat{\pi}_j \rbrace}, \ j = 2, 3, \dots, k.$$

Then, incorporating Bonferroni's corrections, the test, described by the critical region

$$T_{MGIRE} = \max \left\{ \frac{\sqrt{n}(\tilde{\pi}_j - \tilde{\pi}_1)}{\sqrt{\hat{\pi}(1 - \hat{\pi})(\frac{1}{\hat{
ho}_j} + \frac{1}{\hat{
ho}_1})}}, \ j = 2, 3, \dots, k \right\} > \tau_{\alpha/(k-1)},$$

is asymptotically level  $\alpha$  test for the testing problem  $(H, H_{st} - H)$  and is used as a competitor of the proposed tests. From Appendix B, it is not difficult to see that under any  $\pi$ ,

$$\frac{1}{\sqrt{n}}T_{MGIRE} \to \max\{\theta_j, j=1,2,\ldots,k-1\}$$

in probability, which is 'zero' or positive according as  $\pi \in H$  or  $\pi \in H_{st} - H$ . This implies that the *MGIRE* test is consistent for testing H against  $\pi \in H_{st} - H$ .

### GBH test

Here H is rejected at level  $\alpha$  against  $H_{st} - H$  if and only if

$$T_{GBH} = \max \left\{ t_j = \frac{\sqrt{n}(\hat{\pi}_j - \hat{\pi}_1)}{\sqrt{\hat{\pi}(1 - \hat{\pi})(\frac{1}{\hat{p}_1} + \frac{1}{\hat{p}_j})}}, \ j = 2, 3, \dots, k \right\}$$

exceeds the  $100(1-\alpha)$  equi-percentage point,  $c_{k-1,R(\hat{p}),1-\alpha}$ , of  $N_{k-1}(\mathbf{0},R(\hat{p}))$ , the approximated null distribution of t. The consistency of this test for testing H against  $\pi \in H_{st} - H$  can be established by the same technique as in the previous test.

# 5. Simulation study

We perform a simulation study with hundred thousand replications taking k=3 and, for the purpose of illustration, the nominal level  $(\alpha)$  is chosen at 0.05. The proposed test and the competitors are compared with respect to both empirical type I error rate and empirical power. Empirical type I error rate (power) of a test is computed by that proportion of hundred thousand replications of the experiment under  $H(H-H_{st})$ , in which the test statistic exceeds the  $0.95^{th}$  quantile of its asymptotic null distribution.

For a  $2 \times k$  cohort data, setting  $\mathbf{p} = \hat{\mathbf{p}}$  and the common success probability under H at  $\pi = \hat{\pi}$ , 100,000 tables, similar to the data, are generated. If the bootstrap percentile points of the simulated null distributions of the statistics agree with the percentile points of the asymptotic null distributions of the respective statistics, P-values of the tests are obtained using the approximate null distributions,



otherwise P-values are determined by bootstrapping (See, for example, Efron and Tibshirani (1993), Noreen (1989) and Romano (1988, 1989) for details) in which the proportion of cases the test statistics, evaluated from all such 100,000 tables, exceed the respective observed values obtained from the data set.

Similarly, if the empirical type I error rates do not agree with the nominal level, the powers of the corresponding test are evaluated using empirical cut-off point (0.95<sup>th</sup> quantile of the simulated null distribution of the test statistic) instead of the approximate cut-off point.

The simulation study is performed for different choices of n and p. For illustration, we choose n=100,200,300,400 and 500 for both balanced  $(p_1=p_2=p_3)$  and unbalanced situations. As most of the cohort studies indicate highly unbalanced situations , we take p=(0.9,0.05,0.05) (more allocation towards control) and p=(0.1,0.45,0.45) (less allocation towards control) for the present computation. For balanced allocation  $\rho=r_{12}(p)$  is equal to 0.5 and for p=(0.9,0.05,0.05), (0.1,0.45,0.45)  $\rho$  is, respectively, equal to 0.053 and 0.818.  $\pi$  is chosen from  $\{0.1,0.3,0.5\}$  in order to ensure the conformity of the type I error rates to the nominal level. The empirical powers of the tests are obtained under the following cases of the parametric configurations:

Case A:  $\pi$  lying in the boundary of the alternative region, such as:  $\pi_1 = \pi_3 < \pi_2$ .

Case B:  $\pi$  is well within the alternative region, such as: (B1)  $\pi_1 < \pi_2 = \pi_3$ , (B2)  $\pi_1 < \pi_3 < \pi_2$ .

For revealing the behaviour of the tests under *Case A*, we choose  $\pi = (0.1, 0.2, 0.1)$ , and that under *Case B*, we choose  $\pi = (0.1, 0.2, 0.2)$  and (0.1, 0.3, 0.2) for (B1) and (B2), respectively.

*Simplification:* k = 3.

Setting 
$$\hat{\rho} = \sqrt{\frac{\hat{p}_2 \hat{p}_3}{(\hat{\rho}_1 + \hat{\rho}_2)(\hat{\rho}_1 + \hat{\rho}_3)}}$$
, we get  $R(\hat{p}) = \begin{pmatrix} 1 & \hat{\rho} \\ \hat{\rho} & 1 \end{pmatrix}$ , which gives

$$\Lambda(\hat{\boldsymbol{p}}) = \begin{pmatrix} 1 - \hat{\boldsymbol{\rho}} & 0 \\ 0 & 1 + \hat{\boldsymbol{\rho}} \end{pmatrix} \text{ and } W = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix},$$

and hence

$$R^{-1/2}(\hat{\boldsymbol{p}}) = \frac{1}{2} \left( \frac{\frac{1}{\sqrt{1+\hat{\rho}}} + \frac{1}{\sqrt{1-\hat{\rho}}}}{\frac{1}{\sqrt{1+\hat{\rho}}} - \frac{1}{\sqrt{1+\hat{\rho}}}} - \frac{1}{\sqrt{1-\hat{\rho}}}}{\frac{1}{\sqrt{1+\hat{\rho}}} + \frac{1}{\sqrt{1-\hat{\rho}}}} \right).$$

Consequently,  $T_m$  becomes

$$T_m = \max \{a(\hat{\rho})t_2 + b(\hat{\rho})t_3, b(\hat{\rho})t_2 + a(\hat{\rho})t_3\},$$

where

$$a(\hat{\rho}) = \frac{1}{2} (\frac{1}{\sqrt{1+\hat{\rho}}} + \frac{1}{\sqrt{1-\hat{\rho}}}) \text{ and } b(\hat{\rho}) = \frac{1}{2} (\frac{1}{\sqrt{1+\hat{\rho}}} - \frac{1}{\sqrt{1-\hat{\rho}}}).$$

#### Result:

# Computation of Type I error rate

In Table 1, the entries, showing maximum departure of the type I error rates from the nominal level (more than 10 %departure from the nominal level) for different choices of  $\pi$  and n, are marked in bold faces. The table shows that under balanced allocation and unbalanced allocation probabilities



(0.9, 0.05, 0.05) the  $T_m$  test and its competitors, except one exception, have similar behaviour. Again, unlike the  $T_m$  test, type I error rates of the MGIRE test do not agree with the nominal level under the allocation probabilities (0.1, 0.45, 0.45). However, in this situation, the GBH test maintains the nominal level except for small values of  $\pi$ . The more the increase in  $\rho$ , more is the deviation of the type I error rates for the MGIRE and GBH tests from the nominal level.

|     |                                                                                                | •                                                                                                                                                                                                                                                                                                   | J 1                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>'</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |
|-----|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| n   | $T_m$                                                                                          | MGIRE                                                                                                                                                                                                                                                                                               | GBH                                                   | $T_m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MGIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GBH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $T_m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MGIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GBH                                                   |
|     | p =                                                                                            | (1/3, 1/3,                                                                                                                                                                                                                                                                                          | 1/3)                                                  | p = (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [0.09, 0.05,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | p =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.1, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45, 0.45 | 0.45)                                                 |
| 100 | 0.058                                                                                          | 0.052                                                                                                                                                                                                                                                                                               | 0.053                                                 | 0.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.009                                                 |
| 200 | 0.055                                                                                          | 0.050                                                                                                                                                                                                                                                                                               | 0.052                                                 | 0.083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.026                                                 |
| 300 | 0.055                                                                                          | 0.052                                                                                                                                                                                                                                                                                               | 0.053                                                 | 0.082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.036                                                 |
| 400 | 0.053                                                                                          | 0.050                                                                                                                                                                                                                                                                                               | 0.050                                                 | 0.077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.040                                                 |
| 500 | 0.054                                                                                          | 0.051                                                                                                                                                                                                                                                                                               | 0.051                                                 | 0.073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.041                                                 |
| 100 | 0.053                                                                                          | 0.049                                                                                                                                                                                                                                                                                               | 0.051                                                 | 0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.043                                                 |
| 200 | 0.050                                                                                          | 0.049                                                                                                                                                                                                                                                                                               | 0.051                                                 | 0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.043                                                 |
| 300 | 0.052                                                                                          | 0.052                                                                                                                                                                                                                                                                                               | 0.053                                                 | 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.044                                                 |
| 400 | 0.049                                                                                          | 0.049                                                                                                                                                                                                                                                                                               | 0.050                                                 | 0.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.046                                                 |
| 500 | 0.049                                                                                          | 0.047                                                                                                                                                                                                                                                                                               | 0.048                                                 | 0.059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.046                                                 |
| 100 | 0.052                                                                                          | 0.049                                                                                                                                                                                                                                                                                               | 0.050                                                 | 0.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.053                                                 |
| 200 | 0.049                                                                                          | 0.048                                                                                                                                                                                                                                                                                               | 0.049                                                 | 0.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.051                                                 |
| 300 | 0.050                                                                                          | 0.050                                                                                                                                                                                                                                                                                               | 0.051                                                 | 0.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.050                                                 |
| 400 | 0.049                                                                                          | 0.046                                                                                                                                                                                                                                                                                               | 0.047                                                 | 0.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.051                                                 |
| 500 | 0.051                                                                                          | 0.048                                                                                                                                                                                                                                                                                               | 0.050                                                 | 0.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.049                                                 |
|     | 100<br>200<br>300<br>400<br>500<br>100<br>200<br>300<br>400<br>500<br>100<br>200<br>300<br>400 | $\begin{array}{c cccc} & & p = \\ \hline 100 & 0.058 \\ 200 & 0.055 \\ 300 & 0.055 \\ 400 & 0.053 \\ 500 & 0.054 \\ \hline 100 & 0.053 \\ 200 & 0.050 \\ 300 & 0.052 \\ 400 & 0.049 \\ \hline 500 & 0.049 \\ \hline 100 & 0.052 \\ 200 & 0.049 \\ 300 & 0.050 \\ 400 & 0.049 \\ \hline \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | n $T_m$ MGIRE $OBH$ $p = (1/3, 1/3, 1/3)$ 100         0.058         0.052         0.053           200         0.055         0.050         0.052           300         0.055         0.052         0.053           400         0.053         0.050         0.050           500         0.054         0.051         0.051           100         0.053         0.049         0.051           200         0.050         0.049         0.051           300         0.052         0.052         0.053           400         0.049         0.051         0.051           500         0.049         0.049         0.051           500         0.049         0.049         0.053           400         0.049         0.047         0.048           100         0.052         0.049         0.050           200         0.049         0.048         0.049           200         0.049         0.048         0.049           300         0.050         0.050         0.051           400         0.049         0.046         0.047 | n $T_m$ MGIRE         GBH $T_m$ $p = (1/3, 1/3, 1/3)$ $p = (1/3, 1/3, 1/3)$ $p = (1/3, 1/3, 1/3)$ 100         0.058         0.052         0.053         0.099           200         0.055         0.050         0.052         0.083           300         0.055         0.052         0.053         0.082           400         0.053         0.050         0.050         0.077           500         0.054         0.051         0.051         0.073           100         0.053         0.049         0.051         0.063           300         0.050         0.049         0.051         0.063           300         0.052         0.052         0.053         0.060           400         0.049         0.049         0.050         0.061           500         0.049         0.047         0.048         0.059           100         0.052         0.049         0.050         0.042           200         0.049         0.049         0.050         0.042           200         0.049         0.048         0.049         0.048           300         0.050 <t< td=""><td><math>n</math> <math>T_m</math> <math>MGIRE</math> <math>GBH</math> <math>T_m</math> <math>MGIRE</math> <math>p = (1/3, 1/3, 1/3)</math> <math>p = (0.09, 0.05, 1.00)</math> <math>p = (0.09, 0.05, 1.00)</math>           100         0.058         0.052         0.053         0.099         0.099           200         0.055         0.050         0.052         0.083         0.083           300         0.055         0.052         0.053         0.082         0.082           400         0.053         0.050         0.050         0.077         0.077           500         0.054         0.051         0.051         0.073         0.074           100         0.053         0.049         0.051         0.070         0.069           200         0.050         0.049         0.051         0.063         0.064           300         0.052         0.052         0.053         0.060         0.061           400         0.049         0.049         0.050         0.061         0.061           500         0.049         0.047         0.048         0.059         0.060           100         0.052         0.049         0.050         0.041         0.061           500</td><td>n         <math>T_m</math>         MGIRE         GBH         <math>T_m</math>         MGIRE         GBH           <math>p = (1/3, 1/3, 1/3)</math> <math>p = (0.09, 0.05, 0.05)</math>           100         0.058         0.052         0.053         0.099         0.099         0.098           200         0.055         0.050         0.052         0.083         0.083         0.083           300         0.055         0.052         0.053         0.082         0.082         0.081           400         0.053         0.050         0.050         0.077         0.077         0.076           500         0.054         0.051         0.051         0.073         0.074         0.073           100         0.053         0.049         0.051         0.070         0.069         0.070           200         0.050         0.049         0.051         0.063         0.064         0.063           300         0.052         0.052         0.053         0.060         0.061         0.063           400         0.049         0.049         0.051         0.063         0.064         0.063           500         0.049         0.049         0.050         0.061         0.061         0.061</td><td>n         <math>T_m</math>         MGIRE         GBH         <math>T_m</math>         MGIRE         GBH         <math>T_m</math> <math>p = (1/3, 1/3, 1/3)</math> <math>p = (0.09, 0.05, 0.05)</math>           100         0.058         0.052         0.053         0.099         0.099         0.098         0.039           200         0.055         0.050         0.052         0.083         0.083         0.083         0.404           300         0.055         0.052         0.053         0.082         0.082         0.081         0.045           400         0.053         0.050         0.077         0.077         0.076         0.045           500         0.054         0.051         0.051         0.073         0.074         0.073         0.048           100         0.053         0.049         0.051         0.070         0.069         0.070         0.050           200         0.050         0.049         0.051         0.063         0.064         0.063         0.047           400         0.049         0.049         0.050         0.061         0.061         0.060         0.047           400</td><td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td></t<> | $n$ $T_m$ $MGIRE$ $GBH$ $T_m$ $MGIRE$ $p = (1/3, 1/3, 1/3)$ $p = (0.09, 0.05, 1.00)$ $p = (0.09, 0.05, 1.00)$ 100         0.058         0.052         0.053         0.099         0.099           200         0.055         0.050         0.052         0.083         0.083           300         0.055         0.052         0.053         0.082         0.082           400         0.053         0.050         0.050         0.077         0.077           500         0.054         0.051         0.051         0.073         0.074           100         0.053         0.049         0.051         0.070         0.069           200         0.050         0.049         0.051         0.063         0.064           300         0.052         0.052         0.053         0.060         0.061           400         0.049         0.049         0.050         0.061         0.061           500         0.049         0.047         0.048         0.059         0.060           100         0.052         0.049         0.050         0.041         0.061           500 | n $T_m$ MGIRE         GBH $T_m$ MGIRE         GBH $p = (1/3, 1/3, 1/3)$ $p = (0.09, 0.05, 0.05)$ 100         0.058         0.052         0.053         0.099         0.099         0.098           200         0.055         0.050         0.052         0.083         0.083         0.083           300         0.055         0.052         0.053         0.082         0.082         0.081           400         0.053         0.050         0.050         0.077         0.077         0.076           500         0.054         0.051         0.051         0.073         0.074         0.073           100         0.053         0.049         0.051         0.070         0.069         0.070           200         0.050         0.049         0.051         0.063         0.064         0.063           300         0.052         0.052         0.053         0.060         0.061         0.063           400         0.049         0.049         0.051         0.063         0.064         0.063           500         0.049         0.049         0.050         0.061         0.061         0.061 | n $T_m$ MGIRE         GBH $T_m$ MGIRE         GBH $T_m$ $p = (1/3, 1/3, 1/3)$ $p = (0.09, 0.05, 0.05)$ 100         0.058         0.052         0.053         0.099         0.099         0.098         0.039           200         0.055         0.050         0.052         0.083         0.083         0.083         0.404           300         0.055         0.052         0.053         0.082         0.082         0.081         0.045           400         0.053         0.050         0.077         0.077         0.076         0.045           500         0.054         0.051         0.051         0.073         0.074         0.073         0.048           100         0.053         0.049         0.051         0.070         0.069         0.070         0.050           200         0.050         0.049         0.051         0.063         0.064         0.063         0.047           400         0.049         0.049         0.050         0.061         0.061         0.060         0.047           400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

Table 1. Empirical type I error rate:  $T_m$ , MGIRE and GBH tests ( $\alpha = 0.05$ ).

## Computation of empirical power

Table 2 and Table 3 show, respectively, the empirical powers of the tests under *Case A* and *Case B*. For each of the given choices of p,  $\pi$  and n maximum powers are marked in bold faces. *Case A*:

| π               | n   | $T_m$ | MGIRE      | GBH   | $T_m$ | MGIRE       | GBH   | $T_m$ | MGIRE       | GBH   |
|-----------------|-----|-------|------------|-------|-------|-------------|-------|-------|-------------|-------|
|                 |     | p =   | (1/3, 1/3, | 1/3)  | p = ( | 0.09, 0.05, | 0.05) | p =   | (0.1, 0.45, | 0.45) |
|                 | 100 | 0.261 | 0.230      | 0.240 | 0.116 | 0.115       | 0.116 | 0.280 | 0.240       | 0.243 |
|                 | 200 | 0.461 | 0.397      | 0.407 | 0.166 | 0.162       | 0.164 | 0.463 | 0.289       | 0.290 |
| (0.1, 0.2, 0.1) | 300 | 0.623 | 0.549      | 0.561 | 0.292 | 0.290       | 0.292 | 0.620 | 0.384       | 0.384 |
|                 | 400 | 0.745 | 0.668      | 0.679 | 0.267 | 0.264       | 0.267 | 0.735 | 0.463       | 0.463 |
|                 | 500 | 0.832 | 0.764      | 0.772 | 0.307 | 0.306       | 0.307 | 0.813 | 0.535       | 0.537 |

Table 2. Empirical power:  $T_m$ , MGIRE and GBH tests ( $\alpha$ = 0.05, Case A).

Table 2 shows the empirical powers of all the tests for the given choices of  $\pi$  lying in a boundary of parametric space under  $H_{st} - H$ . For the given choices of n, the  $T_m$  test is found to be more powerful than the MGIRE and GBH tests under both balanced and unbalanced allocation probabilities. Based on this empirical power comparison, an approximate ordering of the tests is  $T_m$ , GBH, MGIRE, in which the  $T_m$ -test is the best in terms of having maximum empirical power.

Case B: Table 3 shows numerical computations of empirical power under both Case B1 and Case B2. Here, under Case B1, the GBH test is found to be more powerful than the MGIRE and  $T_m$ 

| $\pi$           | n   | $T_m$      | MGIRE                                    | GBH   | $T_m$        | MGIRE                             | GBH   | $T_m$ | MGIRE                            | GBH   |  |
|-----------------|-----|------------|------------------------------------------|-------|--------------|-----------------------------------|-------|-------|----------------------------------|-------|--|
|                 |     | <b>p</b> = | (1/3, 1/3, 1/3, 1/3, 1/3, 1/3, 1/3, 1/3, | 1/3)  | <b>p</b> = ( | $\mathbf{p} = (0.09, 0.05, 0.05)$ |       |       | $\mathbf{p} = (0.1, 0.45, 0.45)$ |       |  |
|                 | 100 | 0.245      | 0.302                                    | 0.312 | 0.175        | 0.178                             | 0.178 | 0.137 | 0.259                            | 0.260 |  |
|                 | 200 | 0.422      | 0.507                                    | 0.521 | 0.265        | 0.268                             | 0.270 | 0.206 | 0.311                            | 0.312 |  |
| (0.1, 0.2, 0.2) | 300 | 0.572      | 0.667                                    | 0.681 | 0.346        | 0.351                             | 0.352 | 0.282 | 0.397                            | 0.398 |  |
|                 | 400 | 0.683      | 0.775                                    | 0.788 | 0.404        | 0.409                             | 0.411 | 0.347 | 0.492                            | 0.493 |  |
|                 | 500 | 0.792      | 0.866                                    | 0.874 | 0.486        | 0.490                             | 0.494 | 0.392 | 0.563                            | 0.564 |  |
|                 | 100 | 0.519      | 0.566                                    | 0.581 | 0.285        | 0.285                             | 0.287 | 0.374 | 0.468                            | 0.469 |  |
|                 | 200 | 0.810      | 0.847                                    | 0.854 | 0.444        | 0.448                             | 0.450 | 0.629 | 0.634                            | 0.635 |  |
| (0.1,0.3,0.2)   | 300 | 0.939      | 0.957                                    | 0.960 | 0.577        | 0.580                             | 0.582 | 0.803 | 0.777                            | 0.779 |  |
|                 | 400 | 0.980      | 0.989                                    | 0.990 | 0.683        | 0.688                             | 0.690 | 0.903 | 0.879                            | 0.880 |  |
|                 | 500 | 0.995      | 0.997                                    | 0.998 | 0.759        | 0.763                             | 0.765 | 0.951 | 0.905                            | 0.926 |  |

Table 3. Empirical power:  $T_m$ , MGIRE and GBH tests ( $\alpha = 0.05$ , Case B).

tests under both balanced and unbalanced allocation probabilities. Based on this empirical power comparison, like *Case A*, an approximate ordering of the tests is *GBH*, *MGIRE*,  $T_m$ . Under *Case B2* for balanced allocation probabilities and allocation probabilities (0.9, 0.05, 0.05) ordering of the tests with respect to empirical powers remains unaltered with an insignificant variation among the empirical powers. Under allocation probabilities (0.1, 0.45, 0.45) corresponding to *Case B2*, for  $n \ge 300$ ,  $T_m$  test is found to be more powerful, whereas ordering of the tests remains same as in *Case B1* for n = 100 and 200.

## 6. Data study

## Example 1:

The data, given in Table 4, are extracted from the cohort study (Gupta and Mehta, 2000) on the risk of mortality among tobacco users in Mumbai, India,

Table 4. Mortality risk by use of mishri and betel nut among women.

| category  | frequency | $\hat{p}$ | mortality risk $(\hat{\pi})$ |
|-----------|-----------|-----------|------------------------------|
| Control   | 64414     | 0.5225    | 0.0099                       |
| Mishri    | 56515     | 0.4585    | 0.0123                       |
| Betel nut | 2343      | 0.0190    | 0.0126                       |
| total     | 123272    | 1         | -                            |

where users are classified gender-wise into smoking groups (smoking cigarette and bidi (tobacco hand rolled in temburni leaf and flaked)) and consuming smokeless tobacco (mishri, betel quid, betel nut, etc). Table 4 shows the risk of mortality among women in Mumbai from the use of mishri and betel nut. Here, the P-values of all the tests, proposed and competitors, are obtained by bootstrapping. In addition the bootstrap  $0.95^{th}$  percentile points of the simulated null distributions of such test statistics are obtained at various sample sizes. Furthermore, setting  $\mathbf{p} = \hat{\mathbf{p}}$  and  $\mathbf{\pi} = \hat{\boldsymbol{\pi}}$ , another 100,000 tables are generated for those sample sizes. From each such tables the test statistics are computed. Finally, the powers of the tests are obtained as the proportions of cases in which such test statistics exceed the respective bootstrap percentile points. Estimated P-values and powers of the tests corresponding to Example 1 are given in Table 5.

Table 5. P-values and powers of the tests obtained by bootstrapping.

| P-value/Power | $T_m$   | MGIRE   | GBH     |
|---------------|---------|---------|---------|
| P-value       | 0.00020 | 0.00025 | 0.00025 |
| Power         |         |         |         |
| n = 123272    | 0.979   | 0.980   | 0.981   |
| n = 50000     | 0.722   | 0.728   | 0.735   |
| n = 25000     | 0.434   | 0.442   | 0.451   |
| n = 10000     | 0.208   | 0.209   | 0.216   |
| n = 5000      | 0.139   | 0.134   | 0.139   |
| n = 1000      | 0.075   | 0.073   | 0.074   |

It is observed (Table 5) that all the tests, proposed and competitors, strongly reject the null hypothesis of no difference among the risks of mortality, where the  $T_m$  test has the least P-value. For different choices of n in Table 5 we see that empirical powers of the  $T_m$ , GBH and MGIRE tests are approximately equal. For n > 5,000, an approximate ordering of the tests with respect to empirical power is GBH, MGIRE,  $T_m$ , in which the GBH-test is the best in terms of having maximum power. However, for  $n \le 5,000$ , the ordering becomes  $T_m$ , GBH, MGIRE.

### Example 2:

All the tests are applied to another data set (Graubard and Korn, 1987) relating to the effect of maternal alcoholism on congenital sex organ malformation among infants. The information on alcohol consumption is collected from would-be mothers after the first trimester and the malformations among infants are recorded following childbirth. Alcohol consumption categories are classified as average number of drinks per day. The data set is summarized in Table 6.

Table 6. Risk of infant's sex organ malformation for maternal alcoholism.

| average number of drinks/day | frequency of mothers | <b>p</b> | risk of malformation |
|------------------------------|----------------------|----------|----------------------|
| < 1                          | 31616                | 0.9706   | 0.0027               |
| 1-2                          | 793                  | 0.0243   | 0.0063               |
| > 2                          | 165                  | 0.0051   | 0.0121               |
| Total                        | 32574                | 1        | =                    |

Adopting the similar technique, as used in Example 1, P-values and powers of the tests are determined and exhibited in Table 7.

Table 7. P-values and powers of the tests obtained by resampling.

| P-value/Power | $T_m$ | MGIRE | GBH   |
|---------------|-------|-------|-------|
| P-value       | 0.062 | 0.062 | 0.062 |
| Power         |       |       |       |
| n = 32574     | 0.629 | 0.631 | 0.633 |
| n = 10000     | 0.323 | 0.323 | 0.323 |
| n = 5000      | 0.264 | 0.228 | 0.228 |
| n = 1000      | 0.130 | 0.130 | 0.130 |



Table 6 shows that  $\hat{p}_1$  is almost unity and  $\hat{p}_2$  is significantly larger than  $\hat{p}_3$ . Thus, the sample corresponds to an extremely unbalanced situation. Here, as the P-values suggest, all the  $T_m$ , GBH, MGIRE tests strongly reject the null hypothesis. The  $T_m$  test is found to be more powerful than its competitors for  $n \le 10,000$ .

### 7. Discussion

The failure of the type I error rate to attain the nominal level occurs more frequently in the MGIRE and GBH tests than in the  $T_m$  test under unbalanced allocation probabilities. On the boundary of the parameter space under  $H_{st} - H$ , that is, under  $Case\ A$ , the  $T_m$  test is found to be locally more powerful than its competitors. Power of the  $T_m$  test in this case becomes significantly more as compared to that of its competitors with the increase in the value of  $\rho$ . Thus, for unbalanced allocation probabilities yielding high values of  $r_{ij}(p)'s$ , the  $T_m$  test can be preferred for its agreement of type I error rate with the nominal level.

#### References

- [1] A. Futschik and G. C. Pflug, The likelihood ratio test for simple tree order: A useful asymptotic expansion, *J. Stat. Plan. Inference* **70** (1998) 57–68.
- [2] A. Genz, Numerical computation of rectangular bivariate and trivariate normal and t-probabilities, *Stat. Comput.* **14** (2004) 251–260.
- [3] B. Efron and R. Tibshirani, An Introduction to the Bootstrap, (Chapman & Hall, New York, 1993).
- [4] B. I. Graubard and E. L. Korn, Choice of column scores for testing independence in ordered 2 x K contingency tables, *Biometrics* **43** (1987) 471–476.
- [5] B. Singh, M. J. Schell and F. T. Wright, The power functions of the likelihood ratio tests for a simple tree ordering in normal means: Unequal weights, *Comm. Statist. Theory Methods A* **22** (1993) 425–449.
- [6] C. W. Dunnett, A multiple comparison procedure for comparing several treatments with a control, *Canad. J. Statist.* **50** (1955) 1096–1121.
- [7] E. Noreen, Computer Intensive Methods for Testing Hypotheses: An Introduction, (Wiley, New York, 1989).
- [8] E. Teoh, A. Nyska, U. Wormser and S. D. Peddada, Statistical inference under order restrictions on both rows and columns of a matrix, with an application in toxicology, *IMS Collections* Beyond Parametrics in Interdisciplinary Research: Festschrift in Honor of Professor Pranab K. Sen 1 (2008) 62–77.
- [9] F. Bretz, A. Genz and L. A. Hothorn, On the numerical availability of multiple comparison procedures, *Biom. J.* **43**(5) (2001) 645–656.
- [10] F. Bretz and L. A. Hothorn, Statistical analysis of monotone or non-monotone dose–response data from in vitro toxicological assays, ATLA-ALTERN LAB ANIM 31(1) (2003) 81–96.
- [11] F. Schaarschmidt, M. Sill and L. A. Hothorn, Approximate simultaneous confidence intervals for multiple contrasts of binomial proportions, *Biom, J.* **50**(**5**) (2008) 782–792.
- [12] F. T. Wright and T. Tran, Approximating the level probabilities in order restricted inference: The simple tree ordering, *Biometrika* **71(2)** (1985) 429–439.
- [13] J. Hwang and S. Peddada, Confidence interval estimation subject to order restrictions, *Ann. Stat.* **22** (1994) 67–93.
- [14] J. Romano, A bootstrap revival of some nonparametric distance tests, *J. Amer. Statist. Assoc.* **83** (1988) 698–708.
- [15] J. Romano, Bootstrap and randomization tests of some nonparametric hypotheses, *Ann. Stat.* **17** (1989) 141–159.
- [16] K. Leuraud and J. Benichou, A comparison of several methods to test for the existence of a monotonic dose-response relationship in clinical and epidemiological studies, *Stat. Med.* **20** (2001) 3335–3351.



- [17] K. Leuraud and J. Benichou, Tests for monotonic trend from case-control data: Cochran-Armitage-Mantel trend test, isotonic regression and single and multiple contrast tests, *Biom. J.* 46 (2004) 731–749
- [18] L. A. Hothorn, M. Vaeth and T. Hothorn, Trend tests for the evaluation of exposure-response relationships in epidemiological exposure studies, *Epidemiol Perspect Innov.* **6** (2009) 1.
- [19] M. A. Fligner and D. A. Wolfe, Distribution-free tests for comparing several treatments with a control, *Stat. Neerl.* **36** (1982) 119–127.
- [20] M. Conaway, C. Pillers, T. Robertson and J. Sconing, A circular-cone test for testing homogeneity against a simple tree order. *Canad. J. Statist.* **19** (1991) 283–296.
- [21] M. M. Desu, S. Park and S. Chakraborti, Linear rank statistics for the simple tree alternatives, *Biom. J.* **38(3)** (1996) 359–373.
- [22] M. T. Tsai, Maximum likelihood estimation of covariance matrices under simple tree ordering, *J. Multivar. Anal.* **89** (2004) 292–303.
- [23] P. C. Gupta and H. C. Mehta, Cohort study of all-cause mortality among tobacco users in Mumbai, India, *Bull. World Health Organ.* **78**(7) (2000) 877–883.
- [24] R. Magel, A test for the equality of k medians against the simple tree alternative under right censorship, *Comm. Statist. Simul. Comput. B* **17** (1988) 917–925.
- [25] S. D. Peddada and J. K. Haseman, Tests for a simple tree order restriction with application to dose-response studies, *Appl. Stat.* **55(4)** (2006) 493–506.
- [26] S. Peddada, K. Prescott and M. Conaway, Tests for order restrictions in binary response, *Biometrics* **57** (2001) 1219–1227.
- [27] U. Bandyopadhyay and P. Chakrabarti, Single contrast tests for detecting trends in binomial proportions, *J. Korean Statist. Soc.* **42** (2013) 235–246.

#### Appendix A

Asymptotic Distribution under H
Setting

$$M(\hat{p}) = \text{Diag}\left(\sqrt{\frac{\hat{p}_1\hat{p}_2}{\hat{p}_1 + \hat{p}_2}}, \sqrt{\frac{\hat{p}_1\hat{p}_3}{\hat{p}_1 + \hat{p}_3}}, \dots, \sqrt{\frac{\hat{p}_1\hat{p}_k}{\hat{p}_1 + \hat{p}_k}}\right),$$

it follows that, under H, for large n,

$$\sqrt{n}M(\hat{\boldsymbol{p}})C\hat{\boldsymbol{\pi}} \stackrel{a}{\sim} N_{k-1}\left(\boldsymbol{0},\Sigma_{H}(\hat{\boldsymbol{p}})\right),$$

where

$$\Sigma_H(\hat{\boldsymbol{p}}) = M(\hat{\boldsymbol{p}})C\Sigma(\hat{\boldsymbol{p}})C^TM^T(\hat{\boldsymbol{p}}) = \pi(1-\pi)R(\hat{\boldsymbol{p}})$$

with  $R(\hat{p})$  given by Section 3 when p is estimated by  $\hat{p}$ . Hence the statistic t is identified as

$$t = \sqrt{\frac{n}{\hat{\pi}(1-\hat{\pi})}}M(\hat{p})C\hat{\pi}.$$

Now, using the fact that  $\hat{\boldsymbol{p}} \rightarrow \boldsymbol{p}$  in probability, it follows that, under H,

$$t \rightarrow N_{k-1}(\mathbf{0}, R(\mathbf{p}))$$

in distribution as  $n \to \infty$ .



#### Appendix B

Consistency

First, we prove the following result.

**Result B.1:** Let  $A = (\boldsymbol{a}_1 \boldsymbol{a}_2 \cdots \boldsymbol{a}_d)$  be a positive definite symmetric matrix, and  $\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_d)^T$  be a vector of non-negative elements with  $\boldsymbol{\alpha} \neq \boldsymbol{0}$ . Then

$$\max\{\boldsymbol{a}_{i}^{T}\boldsymbol{\alpha}, j=1,2,\ldots,d\} > 0.$$

Proof: Assume that the assertion is false. Then, by the given conditions, we have  $\alpha^T A \alpha \le 0$ . But this is a contradiction as A is positive definite. Hence the result follows.

Next, writing  $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_{k-1})^T$  with

$$\theta_j = \frac{(\pi_{j+1} - \pi_j)}{\sqrt{\pi(1-\pi)}} \sqrt{\frac{p_1 p_{j+1}}{p_1 + p_{j+1}}}, j = 1, 2, \dots, k-1,$$

we can find a vector valued function  $\mathbf{g} = (g_1, g_2, \dots, g_{k-1})^T$  of  $\boldsymbol{\theta}$  such that as  $n \to \infty$ ,

$$\frac{1}{\sqrt{n}}\boldsymbol{t}_{m} = \frac{1}{\sqrt{n}}R^{-\frac{1}{2}}(\hat{\boldsymbol{p}})\boldsymbol{t} = \frac{1}{\sqrt{\hat{\boldsymbol{\pi}}(1-\hat{\boldsymbol{\pi}})}}R^{-\frac{1}{2}}(\hat{\boldsymbol{p}})M(\hat{\boldsymbol{p}})C\hat{\boldsymbol{\pi}}$$

converges to

$$g(\boldsymbol{\theta}) = R^{-\frac{1}{2}}(\boldsymbol{p})\boldsymbol{\theta}$$

in probability for any  $\pi$ , where  $M(\hat{p})$  is defined in Appendix A. It is obvious that  $\theta = 0$  when  $\pi \in H$  and  $\theta_i \ge 0, j = 1, 2, ..., k-1$  with  $\theta \ne 0$  when  $\pi \in H_{st} - H$ . Furthermore, as  $n \to \infty$ ,

$$\frac{1}{\sqrt{n}}T_m \to \mu(\boldsymbol{\theta}) = \max\{g_j(\boldsymbol{\theta}), j = 1, 2, \dots, k-1\}$$

in probability, where  $g_j(\boldsymbol{\theta}) = \boldsymbol{a}_j^T \boldsymbol{\theta}$  with  $\boldsymbol{a}_j$  as the  $j^{th}$  column of the symmetric positive definite matrix  $R^{-\frac{1}{2}}(\boldsymbol{p})$ . Hence, by use of Result B.1, we get

$$\mu(\boldsymbol{\theta}) = 0 \text{ if } \boldsymbol{\pi} \in H$$
 $> 0 \text{ if } \boldsymbol{\pi} \in H_{st} - H.$ 

This implies that the proposed test, described by (3), is consistent for testing H against any  $\pi$  under  $H_{st} - H$ .