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Abstract

In sample surveys, collection of auxiliary information together with the main variable of interest is very
important to increase the efficiency of the estimators of population parameters of interest. Regression and
ratio estimation are very popular and are widely used methods that benefit from the use of auxiliary
information for the estimation of population parameters like mean, total, variance, proportion etc. A
generalized semi-exponential type estimator is proposed in this paper using two auxiliary variables under the
framework of systematic sampling. The expressions of approximate bias and mean square error of the
proposed estimator have been derived. Algebraic conditions have been obtained under which the proposed
estimator is more efficient than the competing estimators considered here. An empirical study has been
carried out to show the improvement in efficiency of the proposed estimator as compared to the existing
estimators.
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1. Introduction

In survey sampling, no single estimation procedure
will always work the best. Various sampling designs
are available for different populations under different
situations. The natural variation among real life
situations requires development of different types of
estimators for different sampling techniques under
different situations for different populations.
Systematic sampling is often advantageous over the
simple random sampling for being easy to implement
and often providing increased precision in estimates
of population parameters of interest. Under this
design, only first sampling unit is selected randomly
and the subsequent units are then selected by
according to certain rules. According to W.G.
Madow and L.H. Madow (1944),”Systematic
sampling is most commonly used probability design
for the estimation of finite population parameters,
due to its simplicity. ”Cochran (1946) declared that
apart from easy to implement, systematic sampling
often provides more efficient estimators as compared
to the simple random sampling (SRS) or stratified
random sampling for different types of populations
under different situations.

Auxiliary information is commonly used together
with the main variable of interest to improve the
estimates of population parameter like the mean, total
and variance, etc. Ratio and regression estimation
methods use auxiliary information in many ways to
obtain better estimation results in terms of minimum
mean square errors. Various authors have used
auxiliary information to improve the estimators in
terms of relative efficiency under systematic
sampling. For details, readers may refer to
Quenouille (1956) and Hansen et al. (1946). Swain
(1964), Shukla (1971) and Singh (1967) have
proposed the classical ratio, product and ratio-cum-
product-type estimators respectively under the
framework of systematic sampling. Srivastava and
Jhajj (1983) used multi-auxiliary variables to propose
a new family of estimators. Kushwaha and Singh
(1989), Banarasi et al. (1993) and Singh and Singh
(1998) suggested different modified ratio, product
and difference type estimators under systematic
sampling. For more recent work on systematic
sampling including some exponential type estimators
using auxiliary information, one can refer to Singh et
al. (2011), Singh and Solanki (2012), Singh and
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Jatwa (2012),Tailor et al.(2013), Khan and Singh
(2015) and Khan (2016).

In this paper, a generalized semi-exponential type
estimator is proposed with two auxiliary variables
with the expectation that this estimator will be more
efficient than some of the other competing estimators
considered in this paper under systematic sampling.
Some existing estimators along with the methodology
and useful notations of systematic sampling are given
in Section 2. The expressions for approximate bias
and mean square error of the proposed estimator have
been derived in Section 3. Some special cases are
also given in the same Section in which the proposed
estimator reduces to many other exponential and non-
exponential type estimators. Theoretical comparisons
with some other existing estimators are addressed in
Section 3. An empirical study that shows percentage
relative efficiency of the proposed estimator with
respect to the mean per unit estimator under
systematic sampling is carried out in Section 4. Some
concluding remarks are given in Section 5.

2. Methodology of Systematic Sampling with
Associated Estimators

In this section, we introduce the following
terminology that is needed in this paper. Let y is the
study variable and x and z be the auxiliary variables
defined on a finite population P consisting of N
distinct but identifiable units, P = (P1, P2, ..., Pn),
numbered in some specific order. A random sample
of size n is selected from the first k units and then
every k™ units is selected corresponding to each unit
in the sample from the first k units. So there will be
total k samples, each of size n, such that N= nk,
where n and k are positive integers. Let (y;, xj ,zj) for
i=1,2,3,..., kand j=1,2,3,...,n denote the values of jt"
unit in the i sample. The systematic sample means
of the variable of interest and the auxiliary variables

i o -1gn
to be estimated 35, ¥y =N ijl Yij
v -15°n - _ n-lyon i
Xgys =N ijlxij and Zyys =N ijlzij are unbiased
estimators of the corresponding population means v,
X and Z respectively.

We also denote the following error terms and the
other notations:
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Vs _Y(l+ ey) and 7y =Z(1+e,)

such that E(e,)=E(e,)=E(e,)=0
E(e})=0[L+(n-)py )5 =C5,
E(ef)=0(L+(n-D)p,)CF =Cf

E(e?)=0(1+(n-1)p,)C} =C]

E(e?)=0(1+(n-1)p,)C7 =C}

E(eje,)=0(1+(n-1)p, | (1+(1-1)p,)"* pC,C, =CiCy
E(eje,)=0(1+(n-1)p, ) (1+ (1=, pC,C.=C.C
E(e,e,)=0(L+(n-1)py ) (1+(n-1)p; ) poC,C. =CC;

E(y; V) E (- X)
and p, = E( ‘Z)(Zij'z‘z)
E(zij—Z)

0=(N-1)/Nn p; =(L+(n-)p;)/ (L+(n-1)p;)

|__x,y,zi¢j
J=XY.z

where py, px and p, are the intraclass correlation
coefficients for study variable y and both auxiliary
variables x and z, respectively and pj is the
correlation coefficient between study variable and
auxiliary variables. Also the quantities Cy, Cx and C,
are population coefficients of variation of the study
variable and the auxiliary variables respectively.

The unbiased mean estimator, without using auxiliary
information, together with the expression for the
variance in systematic sampling is defined as:

pij =S/ SiS; and Hy =p;G; /C; where

@)

th= Vsys ,

var(t) =Y ?CZ. @)
Swain (1964) and Shukla (1971) proposed classical
ratio and product-type estimators under systematic
sampling is given by
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Xsys
Vsys _
t, =%zsys, (5)

The expressions for the mean square error for the
estimators t; and t, upto the first order of
approximation are given respectively by

MSE(tl):VZ(cg +cf(1—2nyJp’;X)),

MSE(tz)z\?Z(cg +c§-(1+ 2Hy2@))_ W

The traditional regression estimator for population
mean under systematic sampling is given by

(6)

3= ysys + byx (X - isys)! ®)
where by is the sample regression coefficient
between y and x. The expression for the mean square
error for the estimator t;, up to the first order
approximation is given as

MSE (t5) =Y C§ (1-pj ) )

Singh et al. (2011) proposed exponential ratio and
product-type estimators for finite population mean
under systematic sampling. The proposed estimators
are given by

~ 10)
47 Yoys p[X+XSSJ

Zos—2Z
tszysysexp[ Syif J
sys

(1)

N

The expressions for mean square error for the
estimators t4 and ts using first order approximation
given respectively by

MSE(t4)=V2(c§ +0.25C? (1—4ny\/£)),

MSE (t;) =¥ 2((:02 +o.25c§(1+4Hyz\/§ ))
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Tailor et al. (2013) proposed the following ratio-
cum-product type estimator for finite population
mean under systematic sampling:

_ )Z jsys
t = — - |.
° ysys L Xsys J [ Z J

The expression for the mean square error of estimator
te, up to first order approximation, is given by:

MSE(t6)=Y’2(c§+cf(1-zHW@)+c§(1+zHyzM-zHu@

Khan (2016) proposed a generalized class of
exponential estimators for the estimation of finite
population mean under systematic sampling. The
estimator with the expression for the mean square
error is given by:

(14)

s)

Z-17
b7 = Ysys XP| @1 4B R (16)

i+ ch(J —ZH),XJp;X) (17
v 2
MSE (t;) =Y ,
+KC§(K —ZHYZprZ + 2JHXZJpXZ)
where

a:g, _ ny_Hyszx
) : \/a (1_p§z) ,

and

* Hyz _nysz

B
b=—, = oy e x
M M= (1_p)2<z) .

3. Generalized Semi-Exponential Type Estimator

In this section, a generalized semi-exponential type
mean estimator is proposed making use of two
auxiliary variables under the framework of
systematic sampling. The proposed estimator is:

Y 5 _
X L - Ty (18)
tGE = y I eXp af y
Sys[xsys] [ Z+(Vy—1)Zg

where vi and v, (v2> 0) are constants that need to be
optimized and estimated for the expression of
minimum value of the mean square error of the
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proposed estimator tge. A generalized constant o can
assume values -1, 0 and 1 to give various special
cases of the proposed estimators.

In order to obtain the expression of mean square error
of the proposed estimator, we expand the proposed
estimator expression using the notations given in (1),
and get.

1-1-2

] x )
te =Y (1+eY)[x(1+eX)] exp[aZ+Z(V2 -1)(1+Ze,)

Applying Taylor series and ignoring the terms
beyond the second order of approximation and taking
expectation on both sides of (19), we get

}am

E(tee -Y)=YE (ey —e, —Vie 8 + vfef)

(20)
2
o a 2 o 2 a 2
1-<—e,+—e;, ——¢€;, r+—€; |
{ { V2 z V2 z V22 Z} V22 Zj
After simplification of (20), we have
* (04
) vlcf(l—ny\/a)+gC22 1)

bias(tzg ) =Y .
{2(a—l)+a—Hyz\/E—lezx\/g}

In order to obtain the expression for the mean square
error of the proposed estimator, applying Taylor
series and ignoring the terms up to the first order
approximation of (19), we have

_a%} (22)

tee =Y (L+e, —vlex)expL y
2

Squaring and taking expectation on both sides of
(22), we get

2
E(tee —Y)Z = YZE[ey —Ve, - \(/xezj . (23)
2

The expression for the mean square error of the
proposed estimator is given as

2 2f, | 02

o * * .
= —2H,,py, +2vH \/
{VZ yz pyz 1" 'xz pxz}

MSE (tge ) =Y
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The optimum values of v; and v, are

where

and v _a
=J 2(opt) ~ M’

The expression of minimum mean square error of the
proposed estimator tge is given as:

MSEpin (tsysGE ) =Y

2, 1n2 * 2
, Cy +JC] (J —ZHW@)+ MC; | (25)

{M —ZHVZ\/EHJHXZ@} |

It is noticed that for different values of vi, v, and a
we may get various forms of exponential and semi
exponential type estimators as new families of teg, as
given in Table 1 (Appendix A).

4. Relative Performance of Proposed Estimator
Compared to other Estimators

In this section, the theoretical comparisons of the
proposed estimator are given with some relevant
competing estimators.

C8 +3C2(3 - 2H, i+
2

The proposed generalized semi exponential
type estimator tee will be more precise
estimator then the unbiased mean per unit
estimator given in (3) when

MSE in (teg ) <Var(ty),

<y2ce,

MCZZ(M 2, oy, +2JHXZ,/p’;Z)

MCF{ 2B ~M ~23H g |- ICF (3 -2y 20

The proposed estimator tee will be more
precise estimator than the classical ratio
estimator given in (6) when

MSE i (tGE ) <MSE(t,),
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Pyx 2
(ZHyz Pyz -M _ZJszVpxz)

C2+JC2(J—2H / y )+
?2 0 1 yX pyx

MCZZ{M —2Hy14/p;Z +2JHXZ,/p’;Z}
s?z(c§+cf(172HW/p’;x)),

Clz(l—Zny./p;x)—JCf(J —2nyqlp;x)
—MCZZ(M ~2H o, +2JHXZJp’;Z)zo.

The proposed estimator tge will be more
precise estimator than the product estimator
given in (7) when

MSEpin (tee ) < MSE(t,).

ACf(A—Zny\/g)+ MCZZ(M -2HYZ@+2AHXZ\/§)
sc§(1+2Hy2@),

c§(1+ 2H o3, )— Acf(A—zHyXJp’;X)
—MCZZ(M —2H /Py +2AHXZJp:Z)20.

The proposed estimator tee will be more
precise estimator than the regression
estimator given in (9) when

MSE in (e ) < MSE (t3),

. c§+ch(J—2HyX@)+Mc§

(M -ZHYZ@QJHXZ@)
ch(Zny./p‘;X —J)+ MC?2

<YIC3(1-p%)

/1C2.

The proposed estimator tse will be more
precise estimator than the exponential ratio
type estimator given in (12) when

MSE,i, (tGE ) <MSE(t,),

Yz(C§+JCf(J —ZHW@)+MC§(M -2HYZ\E+2JHXZJ§))
SYZ(C§+0.25CE(1—4HYX\/;>TYX)),
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cf(o.25—4ny p’;x)—ch(J —2ny,/p*yx)

—MC22(M ~2H ;.o +2JHXZ«/piZ)20.

Vi. The proposed estimator tee will be more
precise estimator than the exponential
product-type estimator given in (13) when

MSE in (tee ) < MSE(t5),

Y’Z(cg +ch(J —2HW\/@)+MC§(M —2HW\E+ZJHXZ@))
sy*?(cg+o.25c§(1+4|-|yz\/@)),

022(0.25+4Hyz o )— ch(J —2ny./p’;x)

—Mczz(M ~2H . [o}, + 20H o0 )z 0.

vii. The proposed estimator tce will be more
precise estimator than the ratio-cum-product
type estimator given in (15) when

MSE in (tee ) < MSE (tg),

Y’Z(cg +ch(J —2HyX@)+ Mcf(M —2HYZ\E+2JHXZ@))
sy*z(cg+Cf(1-2|—|yx\/@)+c§(1+2Hyz\/£—2|-|xz@)),

CE[L- 2y CE{Ls 2H oy -2 -3
£ -2ny\/§)—mc§(m —2Hyz\/E+2JHXZ\/E)zo.

The proposed estimator tece will be more
precise estimator than the generalized
exponential-cum-exponential type estimator
given in (17) when

viii.

MSE i (tGE ) <MSE (t7 ),

Yz(cgucf(a —2ny\/@)+Mc§(M —2Hyz\/E+2JHXZ\/§))
c§+ch(J -2ny\/§)+ ch(K—zHyZ@+2JHXZ@)),

<Y?

2 * 2 *
Q(J—HYX@)WCZHXZ o 20,

5. Empirical Study

Evaluation of the proposed estimator is based on the
percentage relative efficiencies (PRE’s) compared to
the traditional unbiased mean estimator. So the value
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greater than one hundred indicates that the competing
estimators are more efficient than the usual mean
estimator. The PRE’s of all the estimators over the
mean per unit estimator can be obtained from the
following mathematical formula:

var(ty)

PRE =
MSE (t;)

x100,
i=012,..,7,GLG2,...,G10.

Here, we consider a population data set from the

literature given in Table 2, to examine the

performance of the proposed estimator over the other
competing estimators at optimum conditions.

Table2: Population (Source: Tailor et al. (2013)

N 15 n 3 - -

Y 80 C, 056 Py 0.9848
X 44.47 C, 028 Py -0.9760
zZ 48.40 C, 0.43 Pxz -0.9539
Sy 538.57 Sy 2000 Py  0.6652
Sy, -902.87 S2 149.55 Py 0.7070
Sy -241.06 s? 427.83 [ 0.5487

The results of MSE’s and PRE s of all the estimators
considered in this paper are summarized in Table 3.

Table 3: MSE’s and PRE’s of all the estimators

{; MSE PRE’s 4 MSE PRE’s

T 134407  100.00 tos 440834 3301

t 37332 389.62 te,  46.27 3144.94

t, 768.06  189.45 tes 224914  64.70

ts 43.74 3362.67  tes 113100  128.66

t 82009  177.43 tes  93.11 1562.88

ts 104442  139.32 tes  52.99 2746.27

t 187.08  777.79 te; 732120 19.88

t; 23.67 6158.08  trg 510004  28.53

tee 2162 672921  te 75310  193.22
teo 181600  80.13

The results presented in Table 3 indicate that the
proposed  generalized  semi-exponential  type
estimator works considerably better than all other
exponential and  non-exponential  estimators
considered in this paper. The proposed estimator has
the least mean square error as compare to other
estimators.

6. Conclusion

A generalized semi-exponential type estimator is
proposed in this paper for the estimation of finite
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population mean with two auxiliary variables under
the framework of systematic sampling. The
expressions of approximate bias and mean square
error of the proposed estimator are derived. The
algebraic expressions for the mean square error of the
proposed estimator are compared with other existing
estimators both theoretically and empirically. The
efficiency comparisons are also carried out using the
data taken from Tailor et al. (2013). The results
illustrated in Table 3 show that the proposed
generalized semi-exponential type estimator is more
efficient than the other estimators considered in this
paper in term of higher percent relative efficiency.
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APPENDIX A
Table 1: Some Special Cases of Proposed Estimator
Estimators Mean Square Errors

to = Vsys ) MSE (t,) =Y °C§

tGlzysySexp[Z_ZzsyS MSE (tg;) =Y 2 (co+c2 (1 2H,, [P}, ))

t4=ysysexp£§;jzz MSE(t,)=Y (c0+025c2 1- 4Hy2@))

tGZ_ysysexp[zsys_Z MSE(tGZ)zVZ(C§+C§<1+2H Py )) 0 -1 1
t5_ySVSeXp[zSyj;Syzs] MSE (t;) =Y (co +0.25C2 (1+4Hyz\/a )) 0 1 2
tlysy{x):st MSE(tl):vz(cg+cf(1—2HyX@)) 1 0 o0
toa = Vs X):ys exp ? MSE(tG3)=Y2(C§+cf(1—2ny\/£)+c§( y2@+2HXZ@)) 1 1 1
tos = Vs X):ys exp ;{i MSE(tG4):Y2(C§+Cf(1—2HW@)+O.25C§(1—4Hyz@ +4HXZ@)) 1 1 2
tos = Vi ):ys exp Tsysz z MSE(tG5)=Y2(c§+q2(1—2HyX@)+c§(1+2Hyz p’;z—zHXZ@)) 1 011
tos = Vi X):ys exp ;“i;syzs MSE (tgs) = YZ(CO+C1(1 H @)+025c2(1+4Hyz\/E 4HXZ@)) 1 1 2
tzzysysLXSVSJ MSE(tl):?2(c§+cf(1+2ny p’;x)) -1 0 0
tG7_ysys[;(ysjexp Z_;VS MSE (t7) (C0+q(1+2H \/@)wz?(l—sz/E ZHH\/E)) 101 1
tes—ysys[;(ys]exp ZZ: MSE (tgg) =Y (c:0+c1 (1+2H \/&)+025C2(1 Mg oy - 4HXZ@)) 101 2
tGg—ySys[;(ysjexp ZSVSZ_Z MSE (tgo) (c:o+<:1(1+2ny\/@)+c§(1+2HyZ p*yz+2HXZ\/&)) 111
t610 ysys[)s(ysjeXP nyi;Z MSE (tey) (C0+Q(1+2H @)+0.25C2(1+4Hﬂ P;ﬁ‘”‘&@)) 1 1 2
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