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Abstract 

In sample surveys, collection of auxiliary information together with the main variable of interest is very 

important to increase the efficiency of the estimators of population parameters of interest. Regression and 

ratio estimation are very popular and are widely used methods that benefit from the use of auxiliary 

information for the estimation of population parameters like mean, total, variance, proportion etc. A 

generalized semi-exponential type estimator is proposed in this paper using two auxiliary variables under the 

framework of systematic sampling. The expressions of approximate bias and mean square error of the 

proposed estimator have been derived. Algebraic conditions have been obtained under which the proposed 

estimator is more efficient than the competing estimators considered here. An empirical study has been 

carried out to show the improvement in efficiency of the proposed estimator as compared to the existing 

estimators. 

Keywords: Auxiliary information, Generalized Semi-Exponential type estimator, Systematic Sampling, 

Mean Square Error, Percentage Relative Efficiency. 
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1.  Introduction 

In survey sampling, no single estimation procedure 

will always work the best. Various sampling designs 

are available for different populations under different 

situations. The natural variation among real life 

situations requires development of different types of 

estimators for different sampling techniques under 

different situations for different populations.  

Systematic sampling is often advantageous over the 

simple random sampling for being easy to implement 

and often providing increased precision in estimates 

of population parameters of interest. Under this 

design, only first sampling unit is selected randomly 

and the subsequent units are then selected by 

according to certain rules. According to W.G. 

Madow and L.H. Madow (1944),”Systematic 

sampling is most commonly used probability design 

for the estimation of finite population parameters, 

due to its simplicity. ”Cochran (1946) declared that 

apart from easy to implement, systematic sampling 

often provides more efficient estimators as compared 

to the simple random sampling (SRS) or stratified 

random sampling for different types of populations 

under different situations. 

Auxiliary information is commonly used together 

with the main variable of interest to improve the 

estimates of population parameter like the mean, total 

and variance, etc. Ratio and regression estimation 

methods use auxiliary information in many ways to 

obtain better estimation results in terms of minimum 

mean square errors. Various authors have used 

auxiliary information to improve the estimators in 

terms of relative efficiency under systematic 

sampling. For details, readers may refer to 

Quenouille (1956) and Hansen et al. (1946). Swain 

(1964), Shukla (1971) and Singh (1967) have 

proposed the classical ratio, product and ratio-cum-

product-type estimators respectively under the 

framework of systematic sampling. Srivastava and 

Jhajj (1983) used multi-auxiliary variables to propose 

a new family of estimators. Kushwaha and Singh 

(1989), Banarasi et al. (1993) and Singh and Singh 

(1998) suggested different modified ratio, product 

and difference type estimators under systematic 

sampling. For more recent work on systematic 

sampling including some exponential type estimators 

using auxiliary information, one can refer to Singh et 

al. (2011), Singh and Solanki (2012), Singh and 

Jatwa (2012),Tailor et al.(2013), Khan and Singh 

(2015) and Khan (2016). 

In this paper, a generalized semi-exponential type 

estimator is proposed with two auxiliary variables 

with the expectation that this estimator will be more 

efficient than some of the other competing estimators 

considered in this paper under systematic sampling. 

Some existing estimators along with the methodology 

and useful notations of systematic sampling are given 

in Section 2. The expressions for approximate bias 

and mean square error of the proposed estimator have 

been derived in Section 3. Some special cases are 

also given in the same Section in which the proposed 

estimator reduces to many other exponential and non-

exponential type estimators. Theoretical comparisons 

with some other existing estimators are addressed in 

Section 3. An empirical study that shows percentage 

relative efficiency of the proposed estimator with 

respect to the mean per unit estimator under 

systematic sampling is carried out in Section 4. Some 

concluding remarks are given in Section 5. 

2.     Methodology of Systematic Sampling with 
Associated Estimators 

In this section, we introduce the following 

terminology that is needed in this paper. Let y is the 

study variable and x and z be the auxiliary variables 

defined on a finite population P consisting of N 

distinct but identifiable units, P = (P1, P2, … , PN), 

numbered in some specific order. A random sample 

of size n is selected from the first k units and then 

every kth units is selected corresponding to each unit 

in the sample from the first k units. So there will be 

total k samples, each of size n, such that N= nk, 

where n and k are positive integers. Let (yij, xij ,zij) for 

i=1,2,3,…, k and j=1,2,3,…,n denote the values of jth 

unit in the ith sample. The systematic sample means 

of the variable of interest and the auxiliary variables 

to be estimated as, 1
1

n
sys ijjy n y

  ,

1
1

n
sys ijjx n x

  and 1
1

n
sys ijjz n z

  are unbiased 

estimators of the corresponding population means Y , 

X and Z  respectively. 

We also denote the following error terms and the 

other notations: 
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where ρy, ρx and ρz are the intraclass correlation 

coefficients for study variable y and both auxiliary 

variables x and z, respectively and ρij is the 

correlation coefficient between study variable and 

auxiliary variables. Also the quantities Cy, Cx and Cz 

are population coefficients of variation of the study 

variable and the auxiliary variables respectively.

 
The unbiased mean estimator, without using auxiliary 

information, together with the expression for the 

variance in systematic sampling is defined as: 

    0 ,syst y

           

(2) 

                          2 2
0 0 .var t Y C

          

(3) 

Swain (1964) and Shukla (1971) proposed classical 

ratio and product-type estimators under systematic 

sampling is given by 

1 ,
sys

sys

y
t X

x


                  

(4) 

2 .
sys

sys

y
t z

Z


         

(5)
 

The expressions for the mean square error for the 

estimators t1 and t2 upto the first order of 

approximation are given respectively by 

             2 2 2 *
1 0 1 1 2 ,yx yxMSE t Y C C H   

        

(6)
 

         
    2 2 2 *

2 0 2 1 2 .yz yzMSE t Y C C H   

        

(7)
 

The traditional regression estimator for population 

mean under systematic sampling is given by 

       
 3 ,sys yx syst y b X x  

 

          

(8)
 

where byx is the sample regression coefficient 

between y and x. The expression for the mean square 

error for the estimator t3, up to the first order 

approximation is given as 

         
   2 2 2

3 0 1 .yxMSE t Y C 
          

(9)
 

Singh et al. (2011) proposed exponential ratio and 

product-type estimators for finite population mean 

under systematic sampling. The proposed estimators 

are given by  

      

4 exp ,
sys

sys
sys

X x
t y

X x

 
  

           

(10) 

      

5 exp .
sys

sys
sys

z Z
t y

Z z

 
  

    
        

(11)
 

The expressions for mean square error for the 

estimators t4 and t5 using first order approximation 

given respectively by 

    2 2 2 *
4 0 10.25 1 4 ,yx yxMSE t Y C C H   

 

(12)   

    2 2 2 *
5 0 20.25 1 4 .yz yzMSE t Y C C H   

  

(13)
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Tailor et al. (2013) proposed the following ratio-

cum-product type estimator for finite population 

mean under systematic sampling: 

        

6 .
sys

sys
sys

zX
t y

x Z

  
    

           

(14)
 

The expression for the mean square error of estimator 

t6, up to first order approximation, is given by: 

      2 2 2 * 2 * *
6 0 1 21 2 1 2 2 .yx yx yz yz xz xzMSE t Y C C H C H H         (15)

 

Khan (2016) proposed a generalized class of 

exponential estimators for the estimation of finite 

population mean under systematic sampling. The 

estimator with the expression for the mean square 

error is given by: 

         
   7 exp ,

1 1

sys sys
sys

sys sys

X x Z z
t y

X a x Z b z

  
   

         

(16)
 

        
 

 

2 2 *
0 1

2
6

2 * *
2

2

,

2 2

yx yx

yz yz xz xz

C JC J H

MSE t Y

KC K H JH

   
 

  
     
 

   

(17)

 

where 

,a
J




 
 

*

2
,

1

yx yz zx
yx

xz

H H H
J


 


 

and 

,b
M




    
 

*

2
.

1

yz yx xz
yz

xz

H H H
M


 


 

3.   Generalized Semi-Exponential Type Estimator 

In this section, a generalized semi-exponential type 

mean estimator is proposed making use of two 

auxiliary variables under the framework of 

systematic sampling. The proposed estimator is: 

 

1

2

exp ,
1

v

sys
GE sys

sys sys

Z zX
t y

x Z v z

   
    

                

(18)
 

where v1 and v2 (v2> 0) are constants that need to be 

optimized and estimated for the expression of 

minimum value of the mean square error of the 

proposed estimator tGE. A generalized constant α can 

assume values -1, 0 and 1 to give various special 

cases of the proposed estimators. 

In order to obtain the expression of mean square error 

of the proposed estimator, we expand the proposed 

estimator expression using the notations given in (1), 

and get. 

         

 
    

1

2

1 exp .
1 1 1

v

z
GE y

x z

X Z Z Ze
t Y e

X e Z Z v Ze

    
              

(19)

 

Applying Taylor series and ignoring the terms 

beyond the second order of approximation and taking 

expectation on both sides of (19), we get 

           

   2 2
1 1

2
2 2 2

2 2
2 2 2 2

1 .

GE y x y x x

z z z z

E t Y YE e e v e e v e

e e e e
v v v v

    

      
          

   

(20)

 

After simplification of (20), we have  

    
 

 
  

2 * 2
1 1 22

* *
1

1
2 .

2 1

yx yx

GE

yz yz zx zx

v C H C
abias t Y

a H v H

 
   

  
        
   

(21)

 

In order to obtain the expression for the mean square 

error of the proposed estimator, applying Taylor 

series and ignoring the terms up to the first order 

approximation of (19), we have 

 1
2

1 exp .GE y x zt Y e v e e
v

 
    

          

(22)

 

Squaring and taking expectation on both sides of 

(22), we get 

 
2

2 2
1

2

.GE y x zE t Y Y E e v e e
v

 
    

 

             

(23)

 
The expression for the mean square error of the 

proposed estimator is given as 

       
 

 2 2 * 2
0 1 1 1 2

22

* *
1

2

2

.

2 2

yx yx

GE

yz yz xz xz

C v C v H C
v

MSE t Y

H v H
v

 
    

 
  

      
  

 

(24)
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The optimum values of v1 and v2 are 

         
 

*
1 21

yx yz zx
yx

xz

H H H
v J


  


   

and  
 2 ,optv

M




 

where        

 
*

2
.

1

yz yx xz
yz

xz

H H H
M


 



 

The expression of minimum mean square error of the 

proposed estimator tGE is given as: 

 
 

 

2 2 * 2
0 1 2

2

* *

2

.

2 2

yx yx

min sysGE

yz yz xz xz

C JC J H MC

MSE t Y

M H JH

    
 

  
    
    

(25) 

It is noticed that for different values of v1, v2 and α 

we may get various forms of exponential and semi 

exponential type estimators as new families of tGE, as 

given in Table 1 (Appendix A). 

4.     Relative Performance of Proposed Estimator 
Compared to other Estimators 

In this section, the theoretical comparisons of the 

proposed estimator are given with some relevant 

competing estimators. 

i. The proposed generalized semi exponential 

type estimator tGE will be more precise 

estimator then the unbiased mean per unit 

estimator given in (3) when 

   0 ,min GEMSE t Var t
 

  

 
 

2 2 *
0 1

2 2 2
0

2 * *
2

2

,

2 2

yx yx

yz yz xz xz

C JC J H

Y Y C
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   2 * * 2 *

2 12 2 2 0.yz yz xz xz yx yxMC H M JH JC J H         

ii. The proposed estimator tGE will be more 

precise estimator than the classical ratio 

estimator given in (6) when 

   1 ,min GEMSE t MSE t
 

      

 
 

  

2 2 *
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iii. The proposed estimator tGE will be more 

precise estimator than the product estimator 

given in (7) when 

   2 .min GEMSE t MSE t
 

 

   
 

2 * 2 * *
1 2

2 *
2

2 2 2

1 2 ,
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AC A H MC M H AH

C H

      

  

 

          

   
 

2 * 2 *
2 1

2 * *
2
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C H AC A H
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iv. The proposed estimator tGE will be more 

precise estimator than the regression 

estimator given in (9) when 

   3 ,min GEMSE t MSE t
 

          

 
 

 
2 2 * 2
0 1 2

2 2 2 2
0

* *

2

1 ,

2 2

yx yx

yx

yz yz xz xz

C JC J H MC

Y Y C

M H JH

    
 

  
    
   

    

 
 

2 * 2
1 2

2 2
0

* *

2

/ .

2 2

yx yx

yx

yz yz xz xz

JC H J MC

C

H M JH

   
 

   
    
 

 

v. The proposed estimator tGE will be more 

precise estimator than the exponential ratio 

type estimator given in (12) when 

   4 ,min GEMSE t MSE t
 

    
  

2 2 2 * 2 * *
0 1 2

2 2 2 *
0 1

2 2 2

0.25 1 4 ,

yx yx yz yz xz xz

yx yx

Y C JC J H MC M H JH

Y C C H
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2 * 2 *
1 1

2 * *
2

0.25 4 2

2 2 0.

yx yx yx yx

yz yz xz xz

C H JC J H

MC M H JH

    

     

 

vi. The proposed estimator tGE will be more 

precise estimator than the exponential 

product-type estimator given in (13) when 

   5 ,min GEMSE t MSE t
 

    
  

2 2 2 * 2 * *
0 1 2

2 2 2 *
0 2

2 2 2

0.25 1 4 ,

yx yx yz yz xz xz

yz yz

Y C JC J H MC M H JH

Y C C H

       

   

 

        

   
 

2 * 2 *
2 1

2 * *
2

0.25 4 2

2 2 0.

yz yz yx yx

yz yz xz xz

C H JC J H

MC M H JH

    

     

 

vii. The proposed estimator tGE will be more 

precise estimator than the ratio-cum-product 

type estimator given in (15) when 

   6 ,min GEMSE t MSE t
 

    
    

2 2 2 * 2 * *
0 1 2

2 2 2 * 2 * *
0 1 2

2 2 2

1 2 1 2 2 ,

yx yx yz yz xz xz

yx yx yz yz xz xz

Y C JC J H MC M H JH

Y C C H C H H

       

        

 

      

   
   

2 * 2 * * 2
1 2 1

* 2 * *
2

1 2 1 2 2

2 2 2 0.

yx yx yz yz xz xz

yx yx yz yz xz xz

C H C H H JC

J H MC M H JH

       

       
 

viii. The proposed estimator tGE will be more 

precise estimator than the generalized 

exponential-cum-exponential type estimator 

given in (17) when 

   7 ,min GEMSE t MSE t  

    
    

2 2 2 * 2 * *
0 1 2

2 2 2 * 2 * *
0 1 2

2 2 2

2 2 2 ,

yx yx yz yz xz xz

yx yx yz yz xz xz

Y C JC J H MC M H JH

Y C JC J H KC K H JH

       

        

 2 * 2 *
1 2 0.yx yx xz xzC J H MC H    

 
5.     Empirical Study 

Evaluation of the proposed estimator is based on the 

percentage relative efficiencies (PRE’s) compared to 

the traditional unbiased mean estimator. So the value 

greater than one hundred indicates that the competing 

estimators are more efficient than the usual mean 

estimator. The PRE’s of all the estimators over the 

mean per unit estimator can be obtained from the 

following mathematical formula: 

 
0var( )

x100,
i

t
PRE

MSE t


 

0,1,2,...,7, 1, 2,..., 10.i G G G

 Here, we consider a population data set from the 

literature given in Table 2, to examine the 

performance of the proposed estimator over the other 

competing estimators at optimum conditions. 

Table2: Population (Source: Tailor et al. (2013) 

N  15 n
 

3 - - 

Y  80 yC  0.56 yx  0.9848 

X
 

44.47 xC
 

0.28 yz
 -0.9760 

Z
 

48.40 zC
 

0.43 xz
 

-0.9539 

yxS
 

538.57 
2
yS

 
2000 y  0.6652 

yzS
 

-902.87 
2
xS

 
149.55 x

 
0.7070 

xzS
 

-241.06 
2
zS

 
427.83 z

 
0.5487 

The results of MSE’s and PRE’s of all the estimators 

considered in this paper are summarized in Table 3. 

Table 3: MSE’s and PRE’s of all the estimators 

it
 

MSE PRE’s it
 

MSE PRE’s 

t0 1344.07 100.00 tG1 4408.34 33.01 

t1 373.32 389.62 tG2 46.27 3144.94 
t2 768.06 189.45 tG3 2249.14 64.70 

t3 43.74 3362.67 tG4 1131.00 128.66 

t4 820.09 177.43 tG5 93.11 1562.88 
t5 1044.42 139.32 tG6 52.99 2746.27 

t6 187.08 777.79 tG7 7321.20 19.88 

t7 23.67 6158.08 t78 5100.04 28.53 

tGE 21.62 6729.21 tG9 753.10 193.22 

   tG10 1816.00 80.13 

The results presented in Table 3 indicate that the 

proposed generalized semi-exponential type 

estimator works considerably better than all other 

exponential and non-exponential estimators 

considered in this paper. The proposed estimator has 

the least mean square error as compare to other 

estimators. 

6.     Conclusion 

A generalized semi-exponential type estimator is 

proposed in this paper for the estimation of finite 
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population mean with two auxiliary variables under 

the framework of systematic sampling. The 

expressions of approximate bias and mean square 

error of the proposed estimator are derived. The 

algebraic expressions for the mean square error of the 

proposed estimator are compared with other existing 

estimators both theoretically and empirically. The 

efficiency comparisons are also carried out using the 

data taken from Tailor et al. (2013). The results 

illustrated in Table 3 show that the proposed 

generalized semi-exponential type estimator is more 

efficient than the other estimators considered in this 

paper in term of higher percent relative efficiency. 
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APPENDIX A 

Table 1: Some Special Cases of Proposed Estimator 

     Estimators              Mean Square Errors v1 α v2 

0 syst y
   2 2

0 0MSE t Y C  0 0 0 

1 exp
sys

G sys

Z z
t y

Z

 
  

 

 
    2 2 2 *

1 0 2 1 2G yz yzMSE t Y C C H   
 

0 1 1 

4 exp
sys

sys
sys

Z z
t y

Z z

 
  

  

 
    2 2 2 *

4 0 20.25 1 4 yz yzMSE t Y C C H   
 

0 1 2 

2 exp
sys

G sys

z Z
t y

Z

 
  

 

     2 2 2 *
2 0 2 1 2G yz yzMSE t Y C C H   

 
0 -1 1 

5 exp
sys

sys
sys

z Z
t y

Z z

 
  

  

 
    2 2 2 *

5 0 20.25 1 4 yz yzMSE t Y C C H     
0 -1 2 

1 sys
sys

X
t y

x

 
  

 
 

 
    2 2 2 *

1 0 1 1 2 yx yxMSE t Y C C H   
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