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Abstract

Consider the problem of modeling datasets such as numbers of accidents in a population of
insured persons, or incidences of an illness in a population. Various levels of detail or granu-
larity may be considered in describing the parent population. The levels used in fitting data and
hence in describing the population may vary from a single distribution, possibly with extreme
values, to a bimodal distribution, to a mixture of two or more distributions via the Finite Mix-
ture Model, to modeling the population at the individual level via a compound model, which
may be viewed as an infinite mixture model. Given a dataset, it is shown how to evaluate the
fits of the various models by information criteria. Two datasets are considered in detail, one
discrete, the other, continuous.

Keywords: Cluster Analysis, Finite Mixture Model, Bayesian models; Compound models;
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1 Introduction
1.1 Background and Summary

Consider the problem of modeling a dataset of numbers accidents in a population of insured persons,
or the incidence of an illness in a population. One can consider a spectrum of levels of granularity
in describing the data and the corresponding population, from histograms, to a single distribution
from a parametric family , to a bimodal distribution, to a mixture of two or more distributions, to
modeling the population at the individual level via compound (predictive) distributions. Examples
included are a dataset of employee days ill (a discrete variable) and a dataset of family expenditures
on groceries (a continuous variable). Fits to the data obtained by various levels of granularity are
compared using the Bayesian Information Criterion.

1.2 Levels of “Granularity”

In discussing the level at which to analyze a dataset, it will be shown how to go from individuals
to histograms and modes to clusters or mixture components, back to individuals. The various levels
proceed from histograms to clusters to predictive distributions

That is, one can go from modes to sub-populations back to individuals. These choices might
be called choosing the level of “granularity” at which to analyze the dataset. Methods for various
levels of granularity include those indicated in the table.
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Table 1: Methods for various levels of granularity

Method parameters Model

Histograms different bin widths Multinomial
Cluster Analysis parameter values for clusters of individuals Finite Mixture Model
Predictive distribution parameter value for each individual Bayesian prior distribution

There will be two extended analyses of datasets. These datasets are neither new nor large nor
high-dimensional but hopefully will still be found to be interesting, particularly from the point of
view of this paper. These two datasets are:
• Expenditure in a week on fruits and vegetables for 60 English families (Connor & Morrell,

Statistics in Theory & Practice)

• Days ill in a year for 50 miners (hypothetical data from Kenkel, Statistics for Management &
Economics )

2 Days Ill dataset
The first, with discrete data, concerns a (hypothetical) dataset of days ill in a year of n = 50 miners
(Kenkel 1984). The days ill are of course integer values. They range from 0 to 18 days in the year.

Table 2: Frequencies of days ill

days 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
freq 2 3 5 5 2 5 5 4 6 3 0 1 4 1 2 0 0 1 1

The histogram (shown here with bins 0, 1-2, 3-4, . . . ,17-18) suggests bimodality, with modes at
about 7 days and 12 days. (Strictly speaking, it can be argued that there is an error in this figure;
namely, the rectangular bar for the value 0 has the same width as that for 1-2, 3-4, etc., even though
these span two values instead of one. As will be discussed below, the width should be chosen so
that relative frequency is proportional to area, and area = width × height, so that the height should
be doubled if the bin width is halved. This will be discussed further below.)

The sample mean is about x̄ = 6.6 days and the sample variance is s2 = 19.07, that is, the
sample standard deviation is s = 4.37 days. A single Poisson would not provide a good fit — for a
Poisson distribution, the mean and variance are equal, but here the variance is much larger than the
mean.

2.1 Extreme values
But, if one does fit a Poisson to the dataset, omitting, say, the upper two values 17 and 18 days, what
conclusions might be drawn? Would the 17 and 18 be considered to be particularly unusual? That
is to say, later, having fit a distribution, we can assess the probability of such extreme observations.

For now, we note that the mean of the other 50-2 = 48 observations is 5.1 days; the variance,
17.47, still very different values, so a single Poisson would not provide a good fit even after omit-
ting the two largest, possibly outlying, observations. Note that also, besides the gap at 15 and 16

308

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 2 (June 2018) 307–323



Figure 1: Histogram of days ill

days, there is a gap at 10 days, nobody having been ill that number of days. Perhaps a mixture of
distributions would make more sense.

2.2 Poisson mixture model
Consequently, a mixture of two Poissons was fit. The mixture model has p.m.f. (probability mass
function) p(x) = π1 p1(x) + π2 p2(x), where p1(·) is the p.m.f. of a Poisson distribution with
parameter λ1 and p2(·) is the p.m.f. of a Poisson distribution with parameter λ2.

Parameter estimates for the Poisson mixture model. Starting values for iterative estimation
were obtained by a Student’s t method of clustering into two groups (Sclove 2016). In this method,
each cut-point is tried.

In more detail: Obtain the order statistic, resulting from ordering the the observations {x1, x2, . . . , xn}
as x(1) ≤ x(2) ≤ · · · ≤ x(n).

Candidate cut-off points c1, c2, . . . , cn−1 are chosen in between the order statistics:

x(1)) < c1 < x(2) < c2 < · · · < x(n−1) < cn−1 < x(n).

For example, one can take cj to be the midpoint cj = (x(j) + x(j + 1))/2. One then computes
two-sample t for each clustering, that is, for each cut-point. The best clustering into two clusters is
the one which gives the largest value of |t|, or, equivalently, of t2. This is because t2 compares the
within-groups sum of squares and the between-groups sum of squares.

Pooled t assumes equal variances in the two clusters. Unpooled t avoids this assumption. Not
assuming equal variances, one can consider the standardized difference between means as an ob-
jective function, that is, one can use an unpooled two-sample t as the criterion, maximizing it over
cut points. The unpooled t statistic is given by t2 = (x̄1 − x̄2)2 / (s2

1/n1 + s2
2/n2), that is,

|t| = |x̄1 − x̄2| /
√
s2

1/n1 + s2
2/n2.

The value of the two-sample, unequal variance Student’s t is computed for each cut-point, and
the cut-point giving the largest t2 is chosen.
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Iteration. The means of the resulting clusters are taken as tentative estimates of the distributional
means; the cluster relative frequencies, as tentative estimates of the mixing probabilities. These
estimates were 2.1 days, 8.9 days, with cluster frequencies of 17 out of 50 and 33 out of 50, that is,
mixing probabilities of .34, .66. By doing a grid search in the vicinity of these initial estimates
to maximize the mixture-model likelihood, the following estimates were obtained: λ̂1 = 2.77
days, π̂1 = .40, λ̂2 = 9.12 days, π̂2 = .60. Also, taking these as starting points for the EM
(Expectation-Maximization) algorithm, only slightly different estimates were obtained; these were
λ̂1 = 2.84 days, λ̂2 = 9.20 days, π̂1 = .41, π̂2 = .59.

Extreme value assessment with the fitted Poisson mixture. With the fitted Poisson mixture, the
estimate of Pr{X > 16} is .007, fairly small. So perhaps results of 17 or more days could and
should be considered outliers.

2.3 Comparison of models by model-selection criteria
The two fits, by histogram and by Poisson mixture, were compared by means of model-selection
criteria. Given K alternative models, indexed by k = 1, 2, . . . ,K, penalized-likelihood model-
selection criteria are smaller-is-better criteria that can be written in the form

MSCk = −2 LLk + a(n)mk,

where mk is the number of free parameters used in fitting Model k, LLk is the log maximum
likelihood of Model k, and a(n) = lnn for BIC (Bayesian Information Criterion; Schwarz 1978
) and a(n) = 2 for all n for AIC (Akaike’s Information Criterion; Akaike 1973, 1974; Kashyap
1982; Sakamoto 1992). That is, for k = 1, 2, . . . ,K alternative models,

AICk = −2 LLk + 2mk,

and BICk = −2 LLk + (lnn)mk.

The number of parameters for the Poisson mixture is 2 means plus 2 mixing probabilities, less 1
because the probabilities must add to 1. That is 3 free parameters for the Poisson mixture. The
number of parameters for the histogram, scored by the multinomial distribution with 17 categories
(0 through 18, but 15 and 16 are missing), less 1 because the multinomial probabilities must add to
1, leaving 16 free parameters.

The results are in the next table. The histogram wins by a bit according to AIC, but the Poisson
mixture wins by a wide margin according to BIC. To see this, note that BIC is derived (Schwarz
1978) as the first terms in the Taylor series expansion of (-2 times) the posterior probability of Model
k, Pr(Model k | data) = ppk, say. That is,

−2 ln ppk ≈ Const .+ BICk, or BICk ≈ C exp(−BICk/2).

Table 3: Comparison of two models

Model, k - 2 LLk mk AICk BICk ppk

k = 1 : histogram 261.642 16 293.642 324.234 5.0 ×10−7

k = 2 : Poisson mixture 283.473 3 289.473 295.209 ≈ 1
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Table 4: Calculation of posterior probabilties of alternative models

Model, k BICk same - 295 exp(−same/2) ppk

1 324.234 29.234 4.5× 10−7 4.98× 10−7

2 295.209 0.209 0.90085 1.000
sum = 0.90085

To calculate the posterior probabilities, one subtracts a large constant from each, divides by 2,
exponeniates the negative of this, and sums these, dividing by the sum to normalize.

Different bin widths. If one makes several histograms, with different bin widths, how should
the likelihood for histograms be computed? Given data points x1, x2, . . . , xn, the likelihood for a
given p.m.f. p(·) is

L = Πn
i=1 p(xi).

Here p(xi) is the p.m.f. at the data point xi. (For continuous data, we would write the p.d.f.,
f(xi). ) But in the context of histograms what we can take p(xi) to be?

Denote the number of bins by J. Let the bin width be denoted by h . This is an increment along
the x-axis.

Let the bins be indexed by j, j = 1, 2, . . . , J. The class limits are x0, x0 +h, x0 + 2h, . . . , x0 +
Jh. The class intervals (bins) are [x0, x0 + h), [x0 + h, x0 + 2h), . . . , [x0 + (J − 1)h, x0 + Jh).
In the present application, x0 = 0. Now, let j(xi) denote the bin containing xi and nj(xi) be the
frequency in that bin. To approximate f(xi),motivated by f(x1) ≈ [F (x2)−F (x1)] / (x2 − x1) =
[F (x1 + h)− F (x1)]/ [(xi + h)− x1] = [F (x1 + h)− F (x1)]/ h, write

f(xI) ≈ [F (x)− F (xi)] / h

and f(xi) = probability density at xi
≈ probability in bin containing xi / width of bin

= [nj(xi) /n]/h

= nj(xi)/nh.

That is, the concept is that probability density is probability per unit length along the x axis. Thus
the likelihood is

L = Πn
i=1)p(xi) = Πn

i=1 (nj(xi)/nh) = (1/hn) Πn
i=1 (nj(xi)/n).

Note that p(x1, x2, . . . , xn) = Πn
i=1 pj(xi) = ΠJ

j=1 p
nj

j is a multinomial p.m.f. with probabil-
ities pj and frequencies nj for the J categories. The maximized likelihood L is this multinomial
(with pj estimated as nj/n ), divided by hn, which may be viewed as an adjustment to the like-
lihood due to the bin width h. In computing the likelihood, the probability density is to be used,
where “density” is probability / bin width. Note that with a continuous variable we would compute
probability density as f(xi)/h, that is, f(xi)/(Lebesgue measure of the bin interval), whereas with
a discrete variable we are really computing probability density as p(xi)/h, where now h is the
counting measure of the bin interval.
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Varying bin widths. In the case of non-constant bin widths, with a bin-width of hj for the j-th
interval, take the probability density at xi to be nj(i) /hj(i), where hj(i) is the width of the interval
in which xi falls and nj(i) (short for nj(xi) ) is the frequency (count) in that interval. The likelihood
is

L = Πn
i=1 p(xi) = Πn

i=1 (nj(i) / n) / hj(i) = (1/nn) Πn
i=1 nj/ hj(i).

Table 5: Sample distribution with a bin width of 2

days 0 -1 2-3 4-5 6-7 8- 9 10- 11 12- 13 14- 15 16-17 18-19
freq 5 10 7 9 9 1 5 2 1 1

Table 6: Sample distribution with varying bin widths: bins 0, 1, 2-3,4-5.6-7, . . . , 16-17, 18

days 0 1 2-3 4-5 6-7 8- 9 10- 11 12- 13 14- 15 16-17 18
bin width 1 1 2 2 2 2 2 2 2 2 1
freq 2 3 10 7 9 9 1 5 2 1 1

Table 7: Comparison of models

Model, k - 2 LLk mk AICk BICk ppk

histogram, bin width h=1 261.6 16 293.6 324.2 .000
histogram, bin width h=2 273.2 9 291.2 308.4 .001
histogram, varying bin widths 267.8 9 285.8 303.0 .020
Poisson mixture 283.5 3 289.5 295.2 .978

According to AIC, the histogram with varying bin widths wins, the Poisson mixture coming in
second. According to BIC (and, equivalentlly, posterior probability), the Poisson mixture scores the
best, by far. But the point is not just which model wins, but that such a comparison, comparing
histograms on the one hand with fitted distributions on the other, can be made.

Levels of granularity, cont’d. Perhaps another level of granularity is approached by predictive
distributions, which may be viewed as getting to the individual level of granularity. Predictive
distributions may be viewed in the light of compound distributions resulting from a prior distribution
on the parameter at the individual level. From the viewpoint of modern statistics, a predictive
distribution is merely the marginal distribution of the observable random variable, having integrated
out the prior on the parameter. (Details to follow.)

The Yule-Greenwood model approaches modeling at the individual level, stating that each in-
dividual may have his or her own accident rate λ and so is an example of a compound model. In
terms of granularity, the Yule-Greenwood model is a classical example at the level of the individual
in that it employs a Poisson model for each individual’s accident rate λ and then puts a (Gamma)
distribution over the population of values of λ. The model is the Gamma-Poisson model (sometimes
called the Poisson-Gamma model) and is a prime example of a compound model. The Gamma is
a conjugate prior distribution for the Poisson, meaning that the posterior distribution of λ is also a
member of the Gamma family. We discuss this further below; first, however, we fit histograms and
mixtures to a dataset with continuous data.

312

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 2 (June 2018) 307–323



3 An example with continuous data
The variable in the next example is expenditure in a week (£) of n = 60 English families on fruits and
vegetables (Connor and Morrell 1977, data from the British Institute of Cost and Management Ac-
countants). The data are reported to two decimals. This sort of measurement, treated as continuous,
contrasts with the integer-valued variable considered in the example above.

Here are the data, sorted from smallest to largest:

0.21, 0.33, 0.36, 0.38, 0.41, 0.46, 0.48, 0.48, 0.51, 0.51, 0.51, 0.58, 0.64, 0.66, 0.69, 0.69, 0.71,
0.74, 0.74, 0.78, 0.78, 0.79, 0.84, 0.87, 0.87, 0.88, 0.89, 0.91, 0.91, 0.93, 0.98, 0.98, 1.03, 1.03,
1.05, 1.08, 1.12, 1.16, 1.17, 1.19, 1.24, 1.25, 1.26, 1.26, 1.28, 1.33, 1.38, 1.44, 1.48, 1.51, 1.53,
1.58, 1.61, 1.62, 1.76, 1.78, 1.79, 1.83, 1.96, 2.13

Figure 2: Dotplot of Expenditure

The minimum is 0.21 £; the maximum, 2.13 £. The sample mean is x̄ = 1.022 £, the sample
standard deviation, s = 0.4562 £(sample variance s2 = 0.2081). The frequency distribution (see
below in Figure 2 and Table 7) suggests possible bimodality.

Table 8: Frequency distribution of weekly expenditure (£)

lower limit 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91 1.01 1.11
upper limit 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20
Frequency 1 3 4 4 4 6 5 5 4 4

lower limit 1.21 1.31 1.41 1.51 1.61 1.71 1.81 1.91 2.01 2.11
upper limit 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20
Frequency 5 2 2 3 2 3 1 1 0 1

The distribution as tabulated here has a bin width h of 0.10. We consider below also the results for
h = 0.2, for fitting a single Gamma and also for fitting a mixture of two (Gaussian) distributions.
Below we compare these four fits by means of AIC and BIC.
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Figure 3: Histogram of Expenditure

3.1 Fitting a Gamma distribution
The two-parameter Gamma p.d.f. is

f(x) = λm−1e−x/β/ [Γ(m)βm], m > 0, λ > 0, β > 0, x > 0.

The mean is mβ. The variance is mβ2. Method-of-moments estimates are, for the scale parameter
β = σ2/µ, β̂ = s2/x̄ = 0.2081/1.022 = 0.2035. and for the shape parameter m = µ/β, so m̂ =
x̄/β̂ = 1.022/0.2035 = 5.0246.

3.2 Fitting mixture models
3.2.1 Gaussian mixture
The mixture model has p.d.f. f(x) = π1 f1(x) + π2 f2(x), where f1(·) is the p.d.f. of a Gaussian
distribution with mean µ1 and variance σ2

1 and f2(·) is the p.d.f. of a Gaussian with mean µ2 and
variance σ2

2. The estimates are µ̂1 = 0.72£, µ̂2 = 1.46£, σ̂1 = 0.23£, σ̂2 = 0.27£, π̂1 =
.62, π̂2 = .38. The results were obtained by approximate maximization of the likelihood doing an
EM (Expectation-Maximization) iteration. Starting values were obtained by the Student’s t method
(Sclove 2016). As mentioned above, in this method, each cut-point is tried. Two-sample, unequal
variance Student’s t is computed for each cut-point, and the cut-point giving the largest t is chosen.
This gives starting values obtained from the means and variances of the two resulting clusters. Then,
given starting values µ1(0), σ

(0)
1 , µ

(0)
2 , σ

(0)
2 , one then computes fj(xi;µ

(0)
j , σ

2 (0)
j ), j = 1, 2, i =

1, 2, . . . , n, and posterior probabilities of group membership, pp(j |xi), the posterior probability
that xi arose from population j; at step s, for populations j = 1, 2,

pp(s)(j |xi) = π
(s)
j fj(xi;µ

(s)
j , σ

2 (s)
j )/ [π

(s)
1 f1(xi;µ

(s)
j , σ

2 (s)
j ) + π

(s)
2 f2(xi;µ

(s)
j , σ

2 (s)
j )].

Then the estimates are updated. (See McLachlan and Peel (2000), p. 82.) For j = 1, 2,

µ
(s+1)
j = Σn

i=1 pp
(s)(j|xi)xi /Σn

i=1 pp
(s)(j|xi).

As a check, note that if for one group j, it happened that pp(s)(j|xi) = 1 for all cases i, then the
new estimate of the mean for that j is simply Σn

i=1 xi/n = x̄. The updated estimates of the second
moments are, for j = 1, 2,

µ
(s+1)
2j = Σn

i=1 pp
(s)(j|xi)x2

i /Σn
i=1 pp

(s)(j|xi).
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Then, variance equals raw second moment minus square of mean, or

σ
2 (s+1)
j = µ

(s+1)
2j − [µ

(s+1)
j ]2.

Note that the numerical estimates of σ1 and σ2 are somewhat different; the ratio of variances is
(0.27/0.23)2 = 0.075/0.051 = 1.46. Given this, it does not seem particularly worthwhile in this
case to trying fitting two Gaussians with equal variances.

The table summarizes the results. According to AIC, the ranking is: Gamma, Gaussian mix-
ture; histogram with bin width .2, histogram with bin width .1. According to BIC, the ranking is:
Gaussian mixture, Gamma, histogram with bin width .2, histogram with bin width .1.

Table 9: Comparison of results

Model, k - 2 LLk mk AICk BICk ppk

histogram, bin width h=0.1 61.68 18 97.68 135.38 .000
histogram, bin width h=0.2 66.25 9 84.25 103.10 .000
Gamma 71.75 2 75.75 79.94 .382
Gaussian mixture 70.79 5 80.79 78.98 .618

3.2.2 Gamma mixture
The mixture model has p.d.f. f(x) = π1 f1(x) + π2 f2(x), where now f1(·) is the p.d.f. of a
Gamma distribution with shape parameter m1 and scale parameter β1 and f2(·) is the p.d.f. of a
Gamma distribution with shape parameter m2 and scale parameter β2. The means and variances
are, for distributions j = 1, 2, µj = mjβj and σ2

j = mj / β
2
j . The inverse expressions, for the

Gamma parameters in terms of the mean and variance, are βj = σ2
j /µj and mj = µ2

j/σ
2
j .

The resulting estimates are m̂1 = 7.459, β̂1 = 0.099, m̂2 = 22.228, β̂2 = 0.066, π̂1 =
.61, π̂2 = .39.

The results were obtained by approximate maximization of the likelihood doing an EM (Expectation-
Maximization) iteration. Starting values were obtained by the Student’s t method (Sclove 2016).
Given starting values µ1(0), σ

(0)
1 , µ

(0)
2 , σ

(0)
2 , these were converted to starting values form1,m2, β1, β2.

One then computes the values of the Gamma densities,

fj(xi; m
(0)
j , β

(0)
j ), j = 1, 2, i = 1, 2, . . . , n,

and posterior probabilities of group membership, pp(j |xi), the posterior probability that xi arose
from population j; at step s, for populations j = 1, 2,

pp(s)(j |xi) = π
(s)
j fj(xi;m

(s)
j , β

(s)
j )/ [π

(s)
1 f1(xi; m

(s)
j , β

(s)
j ) + π

(s)
2 f2(xi;m

(s)
j , β

(s)
j )].

Then the estimates are updated. For j = 1, 2,

µ
(s+1)
j = Σn

i=1 pp
(s)(j|xi)xi /Σn

i=1 pp
(s)(j|xi).

As a check, note that if for one group j, it happened that pp(s)(j|xi) = 1 for all cases i, then the
new estimate of the mean for that j is simply Σn

i=1 xi/n = x̄. The updated estimates of the second
moments are, for j = 1, 2,

µ
(s+1)
2j = Σn

i=1 pp
(s)(j|xi)x2

i /Σn
i=1 pp

(s)(j|xi).
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Then, of course, variance equals raw second moment minus square of mean, or

σ
2 (s+1)
j = µ

(s+1)
2j − [µ

(s+1)
j ]2.

Then these are converted to updated estimates of mj , βj , and the iteration continues until satisfac-
tory convergence. LL, AIC, and BIC are computed with the resulting estimates.

3.3 Comparison of models by model-selection criteria

The table summarizes the results. According to AIC, the ranking is: Gamma; Gaussian mixture;
Gamma mixture; histogram with bin width .2, histogram with bin width .1. According to BIC, the
ranking is: Gaussian mixture, Gamma, Gamma mixture, histogram with bin width .2, histogram
with bin width .1 The Gamma mixture has only a small posterior probability.

Table 10: Comparison of results

Model, k - 2 LLk mk AICk BICk ppk

histogram, bin width h=0.1 61.68 18 97.68 135.38 .000
histogram, bin width h=0.2 66.25 9 84.25 103.10 .000
Gamma 71.75 2 75.75 79.94 .382
Gaussian mixture 70.79 5 80.79 78.98 .617
Gamma mixture 71.75 5 81.75 92.22 .001

4 Compound Models in General
First, notation notation for probability functions will be reviewed.

The probability density function (p.d.f.) of a continuous random variable (r.v.) X, evaluated
at x, will be denoted by fX(x). The p.d.f. of a continuous random variable Y, evaluated at y, is
similarly denoted by fY (y).

Now consider a bivariate variable x = (y, z). The joint p.d.f. of the r.v.s Y and Z, evaluated at
(y, z) is fY,Z(y, z). Example: Y = WT,X = HT, the value of the joint p.d.f. at y = 80 kg and z
= 170 cm is fWT,HT (80, 170).

Other notations include:
fY |X(y|x): conditional probability density function of the r.v. Y, given that the value of the r.v.
X is x. Example: fWT |HT (wt |HT = 170cm). This represents the bell-shaped curve of weights
for men of height 170 cm.

fY,Z(y | z) = fY |Z(y|z) fZ(z): This is the joint p.d.f. expressed as the product of the condi-
tional of Y given Z and the marginal of Z

fY (y) =
∫
fY,Z(y, z) dz =

∫
fY |Z(y|z) fZ(z) dz: marginal p.d.f. of Y

In the development that follows, fZ(z) plays the role of the prior probability function on the pa-
rameter. That is, denoting the parameter by θ, the function fZ(z) will become fΘ(θ).

The elements of compound models are:
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• The distribution of the observable r.v., given the parameter(s), that is, the conditional distribu-
tion of X , given the parameter(s); and the marginal distribution (predictive distribution). The
marginal distribution will have the hyperparameters among its parameters.

• the prior distribution. Its parameters are called hyperparameters.

A generic symbol for the parameter(s) of the conditional distribution of X is the conventional θ.
As a generic symbol for the hyperparameters, one could use α, since the prior comes first in the
model when one thinks of the parameter value being given first, and then the value of the variable
being observed.

For use in compound models, the probability functions include the following:

The conditional distribution of the observable r.v. X, given the value of the parameter, is
fX|Θ(x | θ); p.d.f. of X for given θ.

The prior distribution on the parameter θ with hyperparameter vector α, fΘ(θ;α).

The naming of compound models takes the form, prior distribution – conditional distribution.
In the Gamma-Poisson model, the conditional distribution of X given λ is Poisson(λ) and the prior
distribution on λ is Gamma. In the Beta-Binomial mode, the conditional distribution of X given
p is Binomial with success probability p and the prior distribution on p is Beta. (Note that some
people use the form, conditional distribution – prior distribution, e.g., Poisson-Gamma.)

5 The Gamma-Poisson model
5.1 Probability functions for the Gamma-Poisson model
In the Gamma-Poisson model, the distribution of X is Poisson with parameter usually called λ.
The p.m.f. is

p(k) = e−λ λk / k!, λ > 0, k = 0, 1, 2, . . . .

The mean and variance are both equal to λ.

Such a distribution can be considered, say, for the number of accidents per individual per year.
For the days ill dataset (days ill in a year for a sample of n = 50 miners), we have fit a single Poisson
(with mean 6.58 days per year). We looked at histograms and observed bimodality. Further, the
fact that the sample variance of 19.06 was considerably larger than the sample mean was a hint of
inadequacy of a single Poisson. As discussed above, a mixture of Poissons was fitted, with mixing
probabilities about .6 and .4 and means about 3 days and 9 days. A finer level of granularity would
be obtained by saying that each person has his own value of λ and putting a distributon on these
over the population.

5.2 Gamma family of distributions
A Gamma distribution could be a good choice. The choice of the Gamma family is non-restrictive
in that the family can achieve a wide variety of shapes. The single-parameter gamma has a shape
parameter m; the two-parameter gamma family has, in addition, a scale parameter, β. (The recipro-
cal of β is the rate parameter, so-called because it is the rate, or intensity, of the associated Poisson
process.) A Gamma distribution with parameter m, has p.d.f. f(λ) = Const.λm−1 e−λ, λ > 0.
The constant is 1/Γ(m). More generally, the two-parameter Gamma can be used: the p.d.f. is

f(λ) =
λm−1e−λ/β

Γ(m)βm
, β > 0, λ > 0.
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The mean is mβ.The variance is mβ2.

The Negative Exponential family of distributions. The special case of m = 1 in the Gamma
family gives the negative exponential family of distributions. So the

f(λ) = e−λ/β/ β, λ > 0.

The mean is β. The variance is β2.

5.3 Development of the Gamma-Poisson model
Putting a population distribution over a parameter can be a very helpful way of modeling. The
resulting model is called a compound model. In a compound model, the random variable X is
considered as the result of sampling that yields an individual and that individual’s value of a pa-
rameter, and then the individual’s value of X is observed, from a distribution with that value of the
parameter. Note that a compound model can be viewed as an infinite mixture model.

In this discussion, focus is on a couple of particular compound models, the Gamma-Poisson,
and later, the Beta-Binomial.

The Yule-Greenwood model, from a modern viewpoint, is an application of the Gamma-Poisson
model to a financial, in fact, actuarial, situation. It is in terms of a model for accident rates in a
population. Suppose that the yearly number of accidents of any given individual i in a population is
distributed according to a Poisson distribution with parameter λi accidents per year. (This is count
data, similar to the days ill data.) Then the probability that individual i, with parameter value λi,
has exactly k accidents in a year, k = 0, 1, 2, . . . , is

e−λi λki /k!, λi > 0, k = 0, 1, 2, . . . .

Some individuals are more accident prone (have a higher accident rate) than others, so different
individuals have different values of λ. A distribution can be put on λ to deal with this. This is the
Yule-Greenwood model, dating from 1920; a precursor of the Predictive Distributions of the new
Predictive Analytics, predating even Abraham Wald (1950) as a founder of modern mathematical
statistics and decision theory and Jimmie Savage (1954) as a founder of modern Bayesian Statistics.

The standard choice of a prior distribution on λ is a Gamma distribution. The Gamma family is
a conjugate family to the Poisson, meaning that the prior and posterior distributions of λ are both in
the Gamma family.

The joint distribution of X and Λ. The joint probability function of X and Λ is

fX,Λ(x, λ) = fΛ(λ) pX|Λ(x |λ), x = 0, 1, 2, . . . , λ > 0.

The expressions for the Gamma and Poisson are put into this. That is, the weight assigned to
pX | |Λ(x |λ) is fΛ(λ).

The joint probability function is used to obtain

• the marginal distribution of X , by integrating out λ, and

• then the posterior distribution of Λ given x, by dividing the joint probability function by the
marginal probability mass function of X.
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Putting in the expressions for the Gamma and Poisson, it is seen that the marginal distribution of X,
the number of accidents that a randomly selected individual has in a year, is of the form

fX(x) =

∫ ∞
0

fX,Λ(x, λ) dλ =

∫
fX|Λ(x|λ) fΛ(λ) dλ.

When the prior is Gamma and the conditional is Poisson, this marginal distribution can be shown to
be negative binomial. Its parameters are m and p = 1/(1 + β).

In the Bayesian model, the parameter of the conditional distribution of X , say θ, is treated as a
random variable Θ.

In the Gamma-Poisson model, θ is the Poisson parameter λ.

The conditional distribution of X given that Θ = θ is Poisson(λ). The probability mass
function is

pX|Λ(x;λ) = e−λ λx / x!, x = 0, 1, 2, . . . , .

The joint p.d.f. of X and Λ can be written as pX | |Λ(x |λ) which is fΛ(λ)(x, λ) = fΛ pX|Λ(x|λ.
As mentioned above, from this, the posterior distribution of Λ, that is, the distribution of Λ

given x, can be computed, and the marginal distribution ofX can be computed. Marginal maximum
likelihood estimation can be applied to obtain estimates of the remaining parameters.

Posterior distribution of Λ. Analogous to Pr(B|A) = Pr(A ∩ B)/Pr(A), the p.d.f. of the
posterior distribution is the joint p.d.f. , divided by the marginal p.d.f. of X :

fΛ|X(λ|x) = fX,Λ(x, λ) / fX(x).

This will turn out to be a Gamma distribution, that is, it is in the same family as the prior. The
Gamma is a conjugate prior for the Poisson.

Marginal distribution ofX . In Predictive Analytics, the marginal distribution ofX is computed
as a model of a future observation or observations of X.

The marginal distribution of X is obtained by integrating the joint distribution with respect
to the parameter. Note that this computation combines information, by weighting the conditional
distribution of X given λ with the prior on λ. This computation of the p.d.f. is, as stated above,
fX(x) =

∫∞
0 t f(x|λ) fΛ(λ) dλ.

Moments. The mean of the marginal distribution of X is mq/p = mβ. The variance of the
marginal distribution of X is mq/p2 = mβ(1 + β).

5.4 Empirical Bayes estimation
Empirical Bayes estimation, at least in the present context, means estimating the parameters of
the prior using observations from the marginal distribution.

The hyperparameters in terms of the moments of the marginal. The parameters of the prior
are called hyperparameters. In this case, they are λ and β. Suppose we solve for them in terms of
the first two moments of the marginal.

Estimating the prior parameters from the marginal. Estimates of the prior parametersm and β
can be obtained by, for example, taking the expressions for the hyperparametersm and β in terms of
the first two raw moments and plugging in estimates m′1 and m′2. Given a sample X1, X2, . . . , Xn,
we have m′1 = X̄ =

∑N
i=1 Xi /N and m′2 =

∑n
i=1 X

2
i / n.
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5.5 Application to the days ill dataset
Returning to the days ill dataset for n = 50 miners, the days ill in a year ranged from 0 to 18; the
distribution seems to be bimodal.

The p.m.f. of the Negative Binomial distribution with parameters m and p is where k is the
number of trials in excess ofm required to getmHeads. In the Gamma-Poisson model, the marginal
distribution of X is Negative Binomial with parameters with parameters m and p = 1/(1 + β).

Given that the true mean of the marginal (“predictive distribution”) Negative Binomial is µ =
mq/p = mβ and the true variance is σ2 = mq/p2 = mβ(1 + β), and the sample mean x̄ = 6.58
and the sample variance s2 = 19.07, one can set up two equations and solve for method of moments
estimates of the hyperparameters m and β in the Gamma prior for λ.
The equations are [1] : mβ = 6.58; [2] : mβ(1 + β) = 19.07.
Putting [1] in [2] gives 6.58(1 + β) = 19.07, 1 + β = 19.07/6.58 ≈ 2.898, ˆbeta ≈ 1.898. Then
m ≈ 6.58/β = 6.58/1.898 ≈ 3.467. Now, µ = m(1 − p)/p = m/p −m, µ + m = m/p, p =
m/(µ + m) or, estimating p = 3.467/(6.58 + 3.467) = 3.467/10.05 = 0.345. So now we have
estimates of the hyperparameters.

To estimate the mean and variance of the Gamma prior, one can proceed as follows. The mean
of the prior is mβ, estimated as 6.58 days ill per year. The variance of the prior is mβ2, estimated
as 6.58(1.898) ≈ 12.49. The standard deviation is thus estimated as

√
12.49 ≈ 3.03 days ill per

year.

Maximum likelihood estimates are not in closed form but numerical values for them could be
obtained by numerical maximization of the likelihood function. It is helpful to use the method of
moments as a quick and simple method to get an idea of the values of the parameters.

The table includes the marginal negative binomial with m = 3 and p = .344 in the comparison.

Table 11: Comparison of models, cont’d

Model, k - 2 LLk mk AICk BICk ppk

histogram, bin width h=1 261.6 16 293.6 324.2 .000
histogram, bin width h=2 273.2 9 291.2 308.4 .000
histogram, varying bin widths 267.8 9 285.8 303.0 .002
Poisson mixture 283.5 3 289.5 295.2 .100
marginal Negative Binomial 283.0 2 286.0 290.8 .898

According to AIC, the histogram with varying bin widths still wins, the Negative Binomial coming
in second. According to BIC (and, equivalentlly, posterior probability), the Negative Binomial
scores the best, by far. This Negative Binomial is unimodal with a mode of .115 at 3 days. Because
it is unimodal, it perhaps does not capture the flavor of the original data, which is reflected better by
the Poisson mixture.
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6 Some other compound models: Beta-Binomial; Normal-Normal
6.1 Beta-Binomial model
Another compound model is the Beta-Binomial model.In this model, the conditional distribution of
X given p is Binomial(n,p). The prior on p is Beta(α, β). The posterior distribution of p given x is
Beta(α + x, β + n − x). It is as if there had been a first round of α + β trials, with α successes,
followed by a second round of n trials, with x successes. Method of Moments estimates of the
parameters of the prior can be relatively easilty obtained. So can the Bayes estimates.

6.2 Normal-Normal model
We have considered the Gamma-Poisson model and, briefly, another prominent compound model,
the Beta-Binomial model, with a Beta prior on the Binomial success probability parameters. Still
another compound model is the Normal-Normal model.

In the Normal-Normal model, X is distributed according toN (µ, σ2), the Gaussian distribution
with mean µ and variance σ2. The prior on µ can be taken to beN (µ0, σ

2
0), or perhaps a Gaussian

with a different mean if there is some particular reason to do this.

The posterior distribution is again Normal. That is, the Normal family is the conjugate family for
the Normal distribution. The marginal distribution is also Normal, with mean E [X] = E [E [X|µ] =
E [µ] = µ0. The variance of the marginal distribution is the mean of the conditional variance plus
the variance of the conditional mean, V[X] = E [σ2] + V[E [µ] = σ2 + V[µ] = σ2 + σ2

0. These two
terms are the “components of variance”. The decomposition of the variance can be obtained also by
doing the requisite algebra on the product of the prior and conditional. This model is similar to a
Random Effects (Model II) model in ANOVA. The group effects (group mean minus overall mean)
are considered as a sample from N (0, σ2

0).

7 Proposed Extensions and Issues
Multivariate models. Multivariate generalizations, where the response is a vector rather than a
scalar, could be interesting, both in general and in the context of the analysis of variance.

Parameter-space boundary issues. Chen and Szroeter (2016) provide a more widely applicable
version of BIC (originally called the Schwarz Information Criterion, SIC). This version deals with
boundary issues in the parameter space. These issues can be important when dealing with mixture
models, as the parameter space changes as the number of component distributions changes..

A BIC for Maximum Marginal Likelihood. In view of the fact that, in this paper, compound
models have been mentioned as a level of granularity for modeling at the individual level, it is
worth mentioning that Spiegelhalter et al. (2002) use an information theoretic argument to derive a
measure pD for the effective number of parameters in a model as the difference between the poste-
rior mean of the deviance and the deviance at the posterior means of the parameters of interest. In
general this measure pD approximately corresponds to the trace of the product of Fisher’s informa-
tion and the posterior covariance, which in normal models is the trace of the ’hat’ matrix projecting
observations onto fitted values, that is, the matrix of estimated regression coefficients. The proper-
ties of the measure in exponential families are explored in their paper. The posterior mean deviance
is suggested as a Bayesian measure of fit or adequacy, and the contributions of individual obser-
vations to the fit and complexity can give rise to a diagnostic plot of deviance residuals against
leverages. Adding pD to the posterior mean deviance gives a deviance information criterion for
comparing models, which is related to other information criteria and has an approximate decision
theoretic justification.
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Bibliography. The books mentioned below on predictive analytics, those of Murphy and
Bishop, do not discuss the Gamma-Poisson model explicitly. Those who wish to consult these
books may however refer to them to find Murphy, p. 41 on the Gamma family of dsitributions
and/or Bishop, p. 688 on the Gamma family. As mentioned, an original paper, anticipating the
subject of compound models, is that of Major Greenwood and G. Udny Yule (1920). To review
background in Probability Theory in general, see, for example, Emanuel Parzen (1992) or Sheldon
Ross (2014). See also Parzen, Stochastic Processes (1962) or Ross, Applied Probability Models
(1970).
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