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In this paper, we first propose a class of bivariate shrinkage estimators based on Steins unbiased estimate of
risk (SURE). Then, we study the effect of correlation coefficients on their performance. Moreover, under some
mild assumptions on the model correlations, we set up the optimal asymptotic properties of our estimates when
the number of vector means to be estimated grows . Furthermore, we carry out a simulation study to compare
how various bivariate competing shrinkage estimators perform and analyze a real data set.
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1. Introduction

One of the most applicable class of models is the class of hierarchical models. It is well-known that
the shrinkage estimates play an important role in hierarchical models. In this line, the James-Stein
estimators, which combine the partial information of various sources, dominates some other estima-
tors like the ordinary least squares estimators, Stein (1956) and James and Stein (1961). However,
the good risk properties of shrinkage estimators make them appealing in many applicable disci-
plines. Undoubtedly, the basic works of James and Stein on shrinkage estimators became a founda-
tion for the other progressing studies on hierarchical normal models. Stein (1962) described a hier-
archical, empirical Bayes interpretation for the shrinkage estimators. Further studies have been done
by Efron and Morris (1973), who tried to interpret these kinds of empirical Bayes estimators by sev-
eral other competing parametric empirical Bayes estimators. Moreover, the homoscedastic (equal
subpopulation variances) empirical Bayes interpretation of estimators as well as heteroscedastic
(unequal subpopulation variances) ones has motivated various treatments of this problem in hier-
archical normal models. For homoscedastic case, we can refer to Baranchik (1970), Strawderman
(1971), Brown (1971, 1975) and Berger (1976) among the others, while the heteroscedastic situa-
tion have been addressed by a few authors. For more details see Hudson (1974), Xie et al. (2012),
Ghoreishi and Meshkani (2014, 2015).
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Following considerable work on univariate shrinkage estimators, the multivariate type of James-
Stein shrinkage estimators have also been considered for random vectors of dimension r ≥ 3, which
either shrink towards the origin vector or another given fixed vector, Lehmann and Casella (1998).
James and Stein (1961) showed that the multiple homoscedastic shrinkage estimator of the popula-
tion mean dominates the corresponding maximum likelihood estimator when r ≥ 3. It means that
the multiple James and Stein shrinkage estimator always achieves lower MSE than the correspond-
ing maximum likelihood estimator. Equivalently, the James and Stein multiple estimator makes the
maximum likelihood estimator inadmissible when r ≥ 3.
From interpretation point of view, the James and Stein estimator, as an empirical Bayes, is based on
the assumption that the population mean is a random vector with an unknown diagonal covariance
matrix σ2I and this matrix is estimated from the data itself, Brown (2008), Brown and Greenshtein
(2009) and Berger and Strawderman (2009). The main point on this approach is that it is achievable
when the random vector of means has a dimension greater than or equal 3 and unfortunately it is
not applicable for 2-dimensional random vectors.
The study of James and Stein (1961) on empirical Bayes shrinkage estimators have extended to the
case of a general covariance matrix, i.e., where measurements are statistically dependent and may
have different variances, see Strawderman (1971) and Bock (1975). They illustrated that the theo-
retical results on multivariate shrinkage estimator hold when r ≥ 3 and in addition the covariance
matrix has the general form σ 2D, which is known up to constant σ2.

To our knowledge, all results on multivariate homoscedastic James-Stein shrinkage estimators hold
for large dimensions r ≥ 3.
The outlines of the paper are:

1) We first introduce an alternative class of bivariate shrinkage estimators.
2) We study the correlation effect on their performance.
3) Since the correlation structure is the biggest challenge in bivariate setting, and this phe-

nomenon can seriously threaten the truth of theoretical results, under some mild assump-
tions on the model correlations, we show that our proposed estimators have optimal asymp-
totic properties.

The paper is organized as follows. In Section 2, we review some basic concepts and define necessary
notations. The main results of this work, including the risk properties of our bivariate conditional
heteroscedastic SURE estimators, are presented in Section 3. We carry out a simple simulation
study to evaluate the performance of our proposed bivariate empirical Bayes shrinkage estimators
in Section 4 and illustrate the theoretical results for a real data set in Section 5. Necessary technical
proofs are given in the appendix.

2. Preliminaries

Let Yi =

(
Y1i

Y2i

)
be the vectors, with 2× 1 dimension, of normal random variables taken indepen-

dently at points i = 1, . . .N. That is

Yi ∼ N2(θ i,Ai). (2.1)
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Moreover, The classical conjugate hierarchical model puts a prior of bivariate normal distribution
on θ i

θ i ∼ N2(µ,Λ).

Combination of two assumed model leads us to the following heteroscedastic hierarchical bivariate
normal model

Yi ∼ N2(θ i,Ai), (2.2)

θ i ∼ N2(µ,Λ), i = 1, · · · ,N,

where Λ= diag{λi} is an unknown 2×2 diagonal matrix with positive entries, µ is a 2×1 unknown
vector and Ais are (potentially) distinct covariance matrices either completely known or will be
known by some plug-in robust estimators.
Application of Bayes theorem for model (2.2) gives us the bivariate posterior density

θ i ∼ N2((A−1
i +Λ−1)−1(A−1

i Yi +Λ−1µ),(A−1
i +Λ−1)−1).

According to this distribution, we consider the posterior means as an alternative class of bivariate
shrinkage estimators of θ i. That is,

θ̂ Λ̂,µ̂
i = (A−1

i + Λ̂−1)−1A−1
i Yi +(A−1

i + Λ̂−1)−1Λ̂−1µ̂, (2.3)

As one can see these estimators tend to shrink the sample vectors to the mean vector µ via some
coefficients, having important roles to balance observations effect in estimation.
It is straightforward to check that the following relationship holds between the coefficients of esti-
mators (2.3),

(A−1
i + Λ̂−1)−1A−1

i = I2×2 − (A−1
i + Λ̂−1)−1Λ̂−1, (2.4)

for identity matrix I2×2. Moreover, we have

(A−1
i +Λ−1)−1A−1

i = (I2×2 +AiΛ−1)−1

= (I2×2 +

(
a2

1i ρia1ia2i

ρia1ia2i a2
2i

)( 1
λ1

0
0 1

λ2

)
)−1

=

(
UΛ

11i −UΛ
12i

−UΛ
21i UΛ

22i

)
= UΛ

i ,

and

(A−1
i +Λ−1)−1Λ−1 =

(
1−UΛ

11i UΛ
12i

UΛ
21i 1−UΛ

22i

)
,

where a1i > 0, a2i > 0 and

UΛ
11i =

1+ a2
2i

λ2

(1+ a2
1i

λ1
)(1+ a2

2i
λ2
)−ρ2

i
a2

1ia
2
2i

λ1λ2

, UΛ
12i =

ρia1ia2i
λ1

(1+ a2
1i

λ1
)(1+ a2

2i
λ2
)−ρ2

i
a2

1ia
2
2i

λ1λ2

UΛ
21i =

ρia1ia2i
λ2

(1+ a2
1i

λ1
)(1+ a2

2i
λ2
)−ρ2

i
a2

1ia
2
2i

λ1λ2

, UΛ
22i =

1+ a2
1i

λ1

(1+ a2
1i

λ1
)(1+ a2

2i
λ2
)−ρ2

i
a2

1ia
2
2i

λ1λ2

.
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It is worth pointing out the following remark concerning our shrinkage estimators.

Remark 2.1. Condition |ρi| → 0 is equivalent to assume separate shrinkage estimates for marginal
variables. If λ1,λ2 →∞, then our shrinkage estimates severely shrank to the observations. Moreover,
if |ρi| > min{a1i,a2i}

max{a1i,a2i} , under some extreme values for the other parameters, our shrinkage estimates
behave in an uncontrolled manner.

Since the heteroscedastic model, though more appropriate for practical applications, is less well
studied in higher dimensions, and it is unclear what types of bivariate shrinkage estimators are
superior in terms of the risk, in this work, we propose SURE approach under some mild conditions
on correlation coefficients. For our purpose, we adopt the quadratic loss function

lN(θ , θ̂
Λ,µ

) =
1
N

N

∑
i=1

{θ i − θ̂ Λ,µ
i }′{θ i − θ̂ Λ,µ

i }.

Let us denote the corresponding risk function and its unbiased estimator by R(θ , θ̂ Λ,µ
) and

SURE(Λ,µ), respectively.
For Bivariate shrinkage estimators (2.3), we have

lN(θ , θ̂
Λ,µ

) =
1
N

N

∑
i=1

{(A−1
i +Λ−1)−1A−1

i (Yi −θ i)+(A−1
i +Λ−1)−1Λ−1(µ −θ i)}′

×{(A−1
i +Λ−1)−1A−1

i (Yi −θ i)− (A−1
i +Λ−1)−1Λ−1(θ i −µ)}.

Therefore, the corresponding risk function is obtained as follows

R(θ , θ̂ Λ,µ
) = E(lN(θ , θ̂

Λ,µ
))

=
1
N

N

∑
i=1

{tr(A−1
i (A−1

i +Λ−1)−2)+(θ i −µ)′Λ−1(A−1
i +Λ−1)−2Λ−1(θ i −µ)}.

It is Straightforward to see that the Stein’s unbiased risk estimator of the R(θ , θ̂ Λ,µ
) is given by

SURE(Λ,µ) =
1
N

N

∑
i=1

{tr[A−1
i (A−1

i +Λ−1)−2A−1
i −Λ−1(A−1

i +Λ−1)−2)Λ−1]Ai+

(Yi −µ)′Λ−1(A−1
i +Λ−1)−2Λ−1(Yi −µ)},

for more details see the appendix. In terms of U11i,U12i,U21i, and U22i, SURE(Λ,µ) can be rewritten
as

SURE(Λ,µ) =
1
N

N

∑
i=1

{[(1−U11i)
2 +U2

21i](Y1i −µ1)
2 +[U2

12i +(1−U22i)
2](Y2i −µ2)

2+

2[(1−U11i)U12i +U21i(1−U22i)](Y1i −µ1)(Y2i −µ2)+

(1−2U11i)a2
1i +2ρia1ia2i[U12i +U21i]+a2

2i(1−2U22i)}.

To estimate µ1, µ2, λ1, and λ2, one can minimize SURE(Λ,µ) with respect to these quantities.
Setting ∂SURE(Λ,µ)

∂ µ1
= 0 and ∂SURE(Λ,µ)

∂ µ2
= 0, give the solutions, satisfying

1
N

N

∑
i=1

[(1−U11i)
2+U2

21i]µ1 +
1
N

N

∑
i=1

[(1−U11i)U12i +U21i(1−U22i)]µ2 = (2.5)
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1
N

N

∑
i=1

{[(1−U11i)
2 +U2

21i]Y1i +[(1−U11i)U12i +U21i(1−U22i)]Y2i}

and

1
N

N

∑
i=1

[(1−U11i)U12i+U21i(1−U22i)]µ1 +
1
N

N

∑
i=1

[U2
12i +(1−U22i)

2]µ2 = (2.6)

1
N

N

∑
i=1

{[(1−U11i)U12i +U21i(1−U22i)]Y1i +[U2
12i +(1−U22i)

2]Y2i}.

In order to elicit the solutions, we assume (λ1,λ2) ∈ [0,b]2, for relatively large real value b > 0.
Then, we partition this cell into several tiny cells and apply (2.5) and (2.6) for (λ1,λ2) at each grid
of these tiny cells and simultaneously compute µ1, µ2 and their corresponding SURE. The values
of µ1, µ2, λ1, and λ2 that minimize the SURE function are considered the SURE estimates. So,
the SURE approach leads us to the Stein’ unbiased risk estimators of Λ and µ which can obtain by
minimizing SURE(Λ,µ) with respect to the Λ and µ, when the solutions exist. That is,

(Λ̂SURE , µ̂SURE) = minargΛ,µ SURE(Λ,µ).

In this case, the corresponding SURE estimators are of the form

θ̂ Λ̂SURE ,µ̂SURE
i = (A−1

i + Λ̂−1
SURE)

−1A−1
i Yi +(A−1

i + Λ̂−1
SURE)

−1Λ̂−1
SURE µ̂SURE . (2.7)

In the next section, we discus how our SURE estimators θ̂ ΛSURE
i and µSURE perform in com-

parison with other competitive estimators resulting from other approaches including Empirical
Bayes Method of Moment Estimators(EBMME) and Empirical Bayes Maximum Likelihood Esti-
mators(EBMLE).

3. Asymptotic properties of the bivariate SURE estimators

In this section, we show that the proposed bivariate SURE estimators (2.7) have optimal asymptotic
properties in comparison with their competitor bivariate estimators. In order to check how well
SURE(Λ,µ) function approximates the loss function lN(θ i, θ̂

Λ,µ
i ), we have

SURE(Λ,µ)− lN(θ , θ̂
Λ,µ

) =
1
N

N

∑
i=1

{Y 2
1i +Y 2

2i −a2
1i −a2

2i −θ 2
1i −θ 2

2i}

− 2
N

N

∑
i=1

{UΛ
11iY

2
1i +UΛ

22iY
2
2i − (UΛ

12i +UΛ
21i)Y1iY2i

−UΛ
11iY1iθ1i −UΛ

22iY2iθ2i +UΛ
12iY2iθ1i +UΛ

21iY1iθ2i

−UΛ
11ia

2
1i −UΛ

22ia
2
2i +(UΛ

12i +UΛ
21i)ρia1ia2i}

− 2
N

N

∑
i=1

{(µ1(1−UΛ
11i)+µ2UΛ

21i)(Y1i −θ1i)

+(µ2(1−UΛ
22i)+µ1UΛ

12i)(Y2i −θ2i)}.
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By rearranging the terms of the above equation, one has

SURE(Λ,µ)− lN(θ , θ̂
Λ,µ

) =
1
N

N

∑
i=1

{Y 2
1i −a2

1i −θ 2
1i}−

2
N

N

∑
i=1

UΛ
11i{Y 2

1i −Y1iθ1i −a2
1i}︸ ︷︷ ︸

I1

− 2
N

N

∑
i=1

µ1(1−UΛ
11i)(Y1i −θ1i)︸ ︷︷ ︸

I2

− 2
N

N

∑
i=1

µ2UΛ
21i(Y1i −θ1i)︸ ︷︷ ︸
I3

+[
1
N

N

∑
i=1

{Y 2
2i −a2

2i −θ 2
2i}−

2
N

N

∑
i=1

UΛ
22i{Y 2

2i −Y2iθ2i −a2
2i}︸ ︷︷ ︸

II1

− 2
N

N

∑
i=1

µ2(1−UΛ
22i)(Y2i −θ2i)︸ ︷︷ ︸

II2

− 2
N

N

∑
i=1

µ1UΛ
12i(Y2i −θ2i)]︸ ︷︷ ︸
II3

+
2
N

N

∑
i=1

UΛ
12i{Y1iY2i −Y2iθ1i −ρia1ia2i}︸ ︷︷ ︸

III1

+
2
N

N

∑
i=1

UΛ
21i{Y1iY2i −Y1iθ2i −ρia1ia2i}︸ ︷︷ ︸

III2

.

(3.1)

To investigate the risk properties of our bivariate SURE estimators, we need to use Lemma (2.1)
in Li(1986). In our setting, it is applicable when the absolute values of UΛ

i entries are less than
or equal to 1. Hence, the following lemma gives some mild conditions on correlation coefficients
to guarantee the framework of Lemma (2.1) in Li(1986). Since the proof is straightforward, it is
omitted.

Lemma 3.1. For each t, the elements of UΛ
i , satisfy in

i) 0 ≤UΛ
11i ≤ 1,

ii) 0 ≤UΛ
22i ≤ 1,

iii) If |ρi| ≤ min{a1i,a2i}
max{a1i,a2i} , then |UΛ

12i| ≤ 1, |UΛ
21i| ≤ 1, and |UΛ

12i +UΛ
21i| ≤ 1.

In Lemma (3.1)[iii], the upper bound for the absolute value of the correlation coefficients can
be removed when a1i = a2i. Under this condition, both variables have the same variances and so the
quantities UΛ

12i, UΛ
21i, and ρi have the same sign.

To proceed, we assume a homogeneous property for the correlation coefficients. It means either
ρi ≥ 0, for all i = 1,2, · · · ,N; or ρi ≤ 0, for all i = 1,2, · · · ,N; which is a natural assumption for
any relation between two assumed variables over sub-populations. For example, in a multinomial
distribution, which can be approximated by a multivariate normal distribution, every two cell fre-
quencies always has a negative correlation. With this assumption, the asymptotic property of our
bivariate SURE function, SURE(Λ,µ), is given by the following theorem. The necessary conditions
(C1-C3) are stated in the appendix.
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Theorem 3.1. For model (2.2), under the conditions C1-C3 and homogeneous property of the cor-
relation coefficients, If |ρi| ≤ min{a1i,a2i}

max{a1i,a2i} , then

sup
Λ,µ

|SURE(Λ,µ)− lN(θ , θ̂
Λ,µ
i )| → 0

in L1 and in probability, as N → ∞.

Another class of bivariate shrinkage estimators, which have appealing asymptotic properties, is
the shrinkage estimators that are shrunk toward the data grand mean. That is,

θ̂ Λ̂,Ȳ
i = (A−1

i + Λ̂−1)−1A−1
i Yi +(A−1

i + Λ̂−1)−1Λ̂−1Ȳ. (3.2)

Using quadratic loss function for these bivariate estimators , it is straightforward to see that

SURE(Λ)− lN(θ i, θ̂
Λ,Ȳ
i ) =

1
N

N

∑
i=1

{Y 2
1i −a2

1i −θ 2
1i}−

2
N

N

∑
i=1

UΛ
11i{Y 2

1i −Y1iθ1i −a2
1i}︸ ︷︷ ︸

I1

− 2
N

N

∑
i=1

(1−UΛ
11i){Ȳ1(Y1i −θ1i)−

a2
1i

N
}︸ ︷︷ ︸

I′2

− 2
N

N

∑
i=1

UΛ
21i{Ȳ2(Y1i −θ1i)−

ρia1ia2i

N
}︸ ︷︷ ︸

I′3

+
1
N

N

∑
i=1

{Y 2
2i −a2

2i −θ 2
2i}−

2
N

N

∑
i=1

UΛ
22i{Y 2

2i −Y2iθ2i −a2
2i}︸ ︷︷ ︸

II1

− 2
N

N

∑
i=1

(1−UΛ
22i){Ȳ2(Y2i −θ2i)−

a2
2i

N
)}︸ ︷︷ ︸

II′2

− 2
N

N

∑
i=1

UΛ
12i{Ȳ1(Y2i −θ2i)−

ρia1ia2i

N
)}︸ ︷︷ ︸

II′3

+
2
N

N

∑
i=1

UΛ
12i{Y1iY2i −Y2iθ1i −ρia1ia2i}︸ ︷︷ ︸

III1

+
2
N

N

∑
i=1

UΛ
21i{Y1iY2i −Y1iθ2i −ρia1ia2i}︸ ︷︷ ︸

III2

.

(3.3)

Therefore, the following theorem holds for (3.3).
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Theorem 3.2. For model (2.2), under the conditions C1-C3 and homogenous property for the cor-
relation coefficients, If |ρi| ≤ min{a1i,a2i}

max{a1i,a2i} , then

sup
Λ

|SURE(Λ)− lN(θ , θ̂
Λ,Ȳ
i )| → 0

in L1 and in probability, as N → ∞.

Remark 3.1. Here, it is important to note that if |ρi|→ 0, the upper bound of (A.1), in the appendix,
tends to become sharper. This means that under uncorrelated situation the asymptotic convergence
rate increases in Theorems (3.1) and (3.2).

4. Simulation study

In this section, we carry out a simple simulation to study how our bivariate shrinkage estimates
perform in comparison with EBMME (Empirical Bayes Method of Moments Estimator) and
EBMLE(Empirical Bayes Maximum Likelihood Estimator) bivariate estimators defined below.

• Empirical Bayes method of moment estimators:

θ̂ Λ̂EBMME ,µ̂EBMME
i = (A−1

i + Λ̂−1
EBMME)

−1A−1
i Yi +(A−1

i + Λ̂−1
EBMME)

−1Λ̂−1
EBMME µ̂EBMME ,

where Λ̂EBMME and µ̂EBMME satisfy in

N

∑
i=1

(Ai +Λ)−
1
2 (Yi −µ) = 0,

N

∑
i=1

{(Yi −µ)′(Ai +Λ)−1(Yi −µ)−2}= 0,

and the elements of Λ̂EBMME are non-negative.
• Empirical Bayes maximum likelihood estimators:

θ̂ Λ̂EBMLE ,µ̂EBMLE
i = (A−1

i + Λ̂−1
EBMLE)

−1A−1
i Yi +(A−1

i + Λ̂−1
EBMLE)

−1Λ̂−1
EBMLE µ̂EBMLE ,

where the elements of Λ̂EBMLE and µ̂EBMLE are obtained by maximizing the log-likelihood
function

l = cte− 1
2

N

∑
i=1

ln{(a2
1i +λ1)(a2

2i +λ2)−ρ2
i a2

1ia
2
2i}

−
N

∑
i=1

1
2{(a2

1i +λ1)(a2
2i +λ2)−ρ2

i a2
1ia

2
2i}

{(a2
2i +λ2)(Y1i −µ1)

2

+(a2
1i +λ1)(Y2i −µ2)

2 −2ρia1ia2i(Y1i −µ1)(Y2i −µ2)}.

For our simulation study, we first derive samples for

Ai =

(
a2

1i ρia1ia2i

ρia1ia2i a2
2i

)
with marginal distributions a2

1i ∼Uni f (1,2) and a2
2i ∼Uni f (0.1,1), and compute the corresponding

correlation coefficients under three following scenarios.
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• Scenario I: we assume a large correlation coefficient for each i = 1,2, . . . ,N. That is ρi =

0.95 min(a1i,a2i)
max(a1i,a2i)

.

• Scenario II: we assume a moderate correlation coefficient, ρi = 0.25 min(a1i,a2i)
max(a1i,a2i)

.

• Scenario III: A weak correlation coefficient is considered in this scenario, ρi =

0.05 min(a1i,a2i)
max(a1i,a2i)

.

We also assume that θ i are independently distributed according to

θ i ∼ N2(

(
0
0

)
,

(
0.9 0
0 0.9

)
).

To measure the predictive power of different bivariate shrinkage estimators, we compute the
limiting risk limN→∞ R(θ , θ̂) for different shrinkage estimators under three scenarios. This process
is repeated a large number of times T = 10,000 to obtain an accurate estimate of the average risk
for each estimator under three scenarios. Moreover, the sample size N is chosen to be 50 and 200.
Table 1 shows the result for various approaches.

Table 1. The risk of various bivariate shrinkage estimates

Sample Size Method Scenario I Scenario II Scenario III
Oracle 0.3342 0.1021 0.0971

N = 50 SURE 0.3343 0.1044 0.0978
EBMME 0.4558 0.3322 0.2320
EBMLE 0.4865 0.3413 0.2403
Oracle 0.1947 0.0540 0.0097

N = 200 SURE 0.1989 0.0553 0.0098
EBMME 0.2271 0.0653 0.0187
EBMLE 0.2430 0.0670 0.0188

Table 1 clearly confirms that although all bivariate shrinkage estimates (SURE, EBMLE and
EBMME) have good performance in comparison with the corresponding Oracle risk estimates, our
bivariate SURE estimates do better in terms of the risk value under Scenarios (I)-(III). That is, as our
theoretical result indicates, the performance of the SURE estimators approaches that of the oracle
risk estimators.

5. Application to a real dataset

Educational performance is one of the principle measures for evaluation of an educational center,
like a university. It is usually considered through two extreme groups of the students who have
either excellent performance (with grade point averages between [17,20]) or poor performance (with
grade point averages less than 12) in comparison with the third (moderate) group (with grade point
averages between [12,17)). In the following, we use E, M, and P notations which stand for groups
of students with Excellent, Moderate, and Poor performances. For a given department indexed by
i, let Ei, Mi, and Pi denote the number of students at each group and let ni denote the number of
total students in the corresponding department during the given semester. Whenever it is necessary
to consider multiple semesters of educations, such as the two semesters in a given educational year,
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we will insert other subscripts, and use symbols such as E ji, M ji, and Pji, to denote the number
of students with excellent, moderate, and poor performances and total number ni j for department
i (= 1, · · · ,N) within semester j (= 1,2).
For data involving N departments over two semesters, we focus on two extreme groups E and P,
which are known as educational outcome of each department, Tinto (2010), and assume that

(E ji,B ji)∼ multinomial(n ji, pE
ji, pP

ji); i = 1, · · ·N; j = 1,2,

where unobserved parameters pE
ji and pP

ji are the corresponding proportions of groups E and P with
the assumptions of pE

1i = pE
2i and pP

1i = pP
2i. Furthermore, the corresponding sample proportions are

denoted by p̂E
ji =

E ji
n ji

and p̂P
ji =

Pji
n ji
. It is obvious that the sample proportions have approximately mul-

tivariate normal with vector mean (pE
ji, pP

ji), and a covariance matrix that depends on the unknown
values pE

ji and pP
ji.

For our purpose, we are interested in dealing with nearly bivariate normal variables such that
a) having variances that depend only on the observed value of n and b) asymptotic performance of
bivariate shrinkage estimators are robust with respect to plug-in estimates for the correlation coeffi-

cient. From Bartlett (1936, 1947), the standard variance-stabilizing transformations, arcsin
√

E
n and

arcsin
√

P
n may do this goal fairly well for univariate case. However, in our bivariate setting, we

prefer to use the transformations

Y1 = arcsin

√
E +1/4
n+1/2

,

and

Y2 = arcsin

√
P+1/4
n+1/2

.

For more details on these transformations, see Brown (2008). It is well-known that these transfor-
mations have marginal variance-stabilizing properties. That is:

E(Y1) := arcsin
√

pE , var(Y1) =
1

4n

E(Y2) := arcsin
√

pP, var(Y2) =
1

4n

By applying Delta-method for the function arcsin
√

x, it is straightforward to see that the estimated
correlation between Y1 and Y2 is given by

ρ̂Y1,Y2 =−

√
(E +1/4)(P+1/4)

(n−E +1/4)(n−P+1/4)
+O(

1
n2 )

We would like to note that Lemma (3.1) holds for this correlation and the class of correlations given
by (5.1). Furthermore, it is not difficult to numerically verify that the asymptotic performance of our
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proposed bivariate shrinkage estimators are robust with respect to a general class of the correlation
between Y1 and Y2

ρ̂c
Y1,Y2

=−

√
(E + c)(P+ c)

(n−E + c)(n−P+ c)
, (5.1)

for a positive constant c ≪ n. For more details on marginal transformation of type (5.1), see Brown
(2008). If in equation (5.1) we put c = 0, the estimated correlation will be equal to the maximum
likelihood estimate of correlation between the sample proportions. In summary, we approximately
have

Y =

(
Y1

Y2

)
∼ N2(

(
arcsin

√
pE

arcsin
√

pB

)
,

1
4n

(
1 ρ̂Y1,Y2

ρ̂Y1,Y2 1

)
)

Let’s look at Educational data, Table 2, for 24 departments at University of Qom over the educa-
tional year 2014. Our primary focus in this research is to evaluate the students’ performance in the
second semester, at each department, when the parameters are estimated based on the first-semester
data. Since we use the information of an already-completed educational year, we can then validate
our bivariate estimation performance by comparing the estimated values with the real values for the
second semester. To evaluate an estimator θ̂ based on the transformation Y2 j, we measure the total
bivariate sum of squared prediction errors(TSE) defined as

T SE(θ̂) =
N

∑
i=1

(Y2i − θ̂ i)
′(Y2i − θ̂ i)−

N

∑
i=1

1
2n2i

.

Table 3 summarizes the numerical results of our bivariate shrinkage estimators in compari-
son with the other competing bivariate shrinkage estimators. The corresponding T SE values are
reported. Acceptable performance of our bivariate SURE estimators, among the other estimators,
are shown by Table 3. To numerically investigate the robust performance of our bivariate shrinkage
estimators, with respect to little changes in correlation coefficient, we present a plot of T SE versus
c in (5.1). As Figure 1 illustrates, TSE values of two approaches EBMME and EBMLE always
dominate the corresponding values of SURE even for fairly large value of c.
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Table 2. Number of students according to their educational performance and department of study at each semester over
educational year 2014 in University of Qom

Semester 1 Semester 2
Department E M P Total E M P Total
Statistics 5 16 1 22 4 13 4 21
Law 28 21 2 51 25 22 4 51
Mathematics 5 18 8 31 4 13 12 29
English literature 5 29 9 43 9 18 14 41
Arabic literature 23 15 3 41 14 16 9 41
Persian literature 24 29 3 56 11 30 10 51
Biology 4 7 2 13 2 9 1 12
Chemistry 14 28 7 49 8 31 9 48
Information 16 16 1 33 23 8 1 32
Economics 9 21 6 36 3 22 11 36
Education 20 21 3 44 13 25 6 44
Quranic Sciences 23 3 1 27 17 8 2 27
Computer Sciences 6 23 6 35 3 16 14 32
Jurisprudence 32 15 0 47 38 7 2 47
Philosophy 23 8 4 35 23 5 3 31
Physics 6 27 6 39 3 20 15 38
Business Management 20 18 6 44 20 16 8 44
Industrial Management 27 4 0 31 19 12 1 32
Architectural Engineering 13 5 1 19 1 16 2 19
Electrical Engineering 23 26 1 50 12 33 5 50
Industrial Engineering 4 13 2 19 6 12 1 19
Civil Engineering 25 28 8 61 13 40 8 61
Computer Engineering 18 24 2 44 15 27 1 43
Mechanical Engineering 16 11 3 30 8 17 5 30

Table 3. TSE for various c

c 0.25 1 2 5 10
SURE 0.101 0.079 0.064 0.035 0.021
EBMME 0.520 0.459 0.388 0.249 0.163
EBMLE 0.557 0.507 0.426 0.281 0.192

Appendix

We first prove E(SURE(Λ,µ)) = R(θ , θ̂ Λ,µ
). It is easy to see

E(SURE(Λ,µ)) =
1
N

N

∑
i=1

{tr[A−1
i (A−1

i +Λ−1)−2A−1
i −Λ−1(A−1

i +Λ−1)−2)Λ−1]Ai

+E[(Yi −µ)′Λ−1(A−1
i +Λ−1)−2Λ−1(Yi −µ)]}
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Fig. 1. TSE against c values

=
1
N

N

∑
i=1

{tr[A−1
i (A−1

i +Λ−1)−2A−1
i −Λ−1(A−1

i +Λ−1)−2)Λ−1]Ai

+[θ i −µ)′Λ−1(A−1
i +Λ−1)−2Λ−1(θ i −µ)]

+ tr[Λ−1(A−1
i +Λ−1)−2)Λ−1Ai]}

=
1
N

N

∑
i=1

{tr(A−1
i (A−1

i +Λ−1)−2)+(θ i −µ)′Λ−1(A−1
i +Λ−1)−2Λ−1(θ i −µ)}

= R(θ , θ̂ Λ,µ).�

For establishing the asymptotic results, the following conditions are required,

C1) For j = 1,2 and some δ > 0 :
limsupN→∞

1
N ∑N

i=1 σ 4
ji < ∞,

limsupN→∞
1
N ∑N

i=1 σ 2
jiθ 2

ji < ∞,

limsupN→∞
1
N ∑N

i=1 a2
1iθ 2

2i < ∞,

limsupN→∞
1
N ∑N

i=1 a2
2iθ 2

1i < ∞.

C2) 
limsupN→∞

1
N ∑N

i=1 θ 2+δ
ji < ∞.

limsupN→∞
1
N ∑N

i=1 θ1i < ∞,

limsupN→∞
1
N ∑N

i=1 θ2i < ∞,

C3) Let |µ1| ≤ maxt |Y1i|, and |µ2| ≤ maxt |Y2i|. Since the sensible shrinkage estimators would
attempt to shrink toward locations that lie inside the range of the data, these assump-
tions are included for technical reasons to facilitate the proof. These conditions imply that
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E(max1≤i≤N Y 2
ji) = O(N

2
(2+δ∗) ), for j = 1,2, where δ ∗ = min(1,δ ), which is necessary to

prove our theorems. For more details see Xie et al. (2012).

Proof of Theorem (3.1)
From (3.1), we have

sup
Λ,µ

|SURE(Λ,µ)− lN(θ , θ̂
Λ,µ
i )| ≤ sup

Λ,µ
|I1|+ sup

Λ,µ
|I2|+ sup

Λ,µ
|I3|

+ sup
Λ,µ

|II1|+ sup
Λ,µ

|II2|+ sup
Λ,µ

|II3|

+ sup
Λ,µ

|III1|+ sup
Λ,µ

|III2|.

The L2 convergence of the supΛ,µ |I1| and supΛ,µ |I2|, and L1 convergence of supΛ,µ |I2|, supΛ,µ |I3|,
supΛ,µ |II2|, and supΛ,µ |II3| immediately obtain from Theorems (3.1) and (5.1) in Xie et al. (2012)
for univariate case. The proof of two last expressions, which consider interaction between two
random variables, is given below. Without loss of generality, we assume wherever it is needed, the
summands are rearranged according to decreasing order of their coefficients UΛ

12t . Therefore, we
have

sup
Λ,µ

|III1|= sup
Λ

| 2
N

N

∑
i=1

UΛ
12i{Y1iY2i −Y2iθ1i −ρia1ia2i}|

= sup
λ2>0

sup
λ1>0

| 2
N

N

∑
i=1

UΛ
12i{Y1iY2i −Y2iθ1i −ρia1ia2i}|.

Under necessary conditions for correlation coefficients in Lemma (3.1)[iii], and using Lemma (2.1)
in Li (1986), the last term is equal to

sup
{1≥UΛ

121≥UΛ
122,··· ,≥UΛ

12N≥0}
| 2
N

N

∑
i=1

UΛ
12i{Y1iY2i −Y2iθ1i −ρia1ia2i}|

≤ max
1≤t≤N

| 2
N

t

∑
i=1

{Y1iY2i −Y2iθ1i −ρia1ia2i}|.

Let Mt = ∑t
i=1{Y1iY2i −Y2iθ1i − ρia1ia2i}. It is easy to see that Mt ; t = 1,2, · · · form a martingale

process. Therefore the L2 maximum inequality implies

E(max1≤t≤NM2
t )≤ 4E(M2

N) = 4E[
N

∑
i=1

{(Y1i −θ1i)Y2i −ρia1ia2i}]2

= 4E[
N

∑
i=1

{(Y1i −θ1i)
2Y 2

2i +ρ2
i a2

1ia
2
2i −2ρia1ia2i(Y1i −θ1i)Y2i}

= 4
N

∑
i=1

[(1+ρ2
i )a

2
1ia

2
2i +a2

1iθ 2
2i].. (A.1)

Therefore, conditions (C1) and (C2) imply that E(max1≤t≤N(
2
N Mt)

2)→ 0, which is equivalent to

sup
Λ,µ

|III1|= sup
Λ

| 2
N

N

∑
i=1

UΛ
12i{Y1iY2i −Y2iθ1i −ρia1ia2i}| → 0 in L2 as N → ∞.
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The same argument shows

sup
Λ,µ

|III2|= sup
Λ

| 2
N

N

∑
i=1

UΛ
12i{Y1iY2i −Y1iθ2i −ρia1ia2i}| → 0 in L2 as N → ∞.�

Proof of Theorem (3.2)
Form (3.3) it is obvious that

sup
Λ

|SURE(Λ)− lN(θ i, θ̂
Λ,Ȳ
i )| ≤ sup

Λ
|I1|+ sup

Λ
|I′2|+ sup

Λ
|I′3|

+ sup
Λ

II1 + sup
Λ

|II′2|+ sup
Λ

|II′3|

+ sup
Λ

|III1|+ sup
Λ

|III2|.

For univariate L2 convergence of the supΛ |I1| and supΛ |II2|, L1 convergence of supΛ |I′2| and
supΛ |II′2| see Xie et al. (2012). The proof of L2 convergence of supΛ |III1| and supΛ |III2| is dis-
cussed in Theorem (3.1). The proof of convergence of interaction terms supΛ |I′3| and supΛ |II′3|
comes below. To prove the convergence of supΛ |I′3|, we assume the summands are rearranged
according to decreasing order of their coefficients. Therefore, we have

sup
Λ

|I′3|= sup
Λ

| 2
N

N

∑
i=1

UΛ
21i{Ȳ2(Y1i −θ1i)−

ρia1ia2i

N
}|

≤ sup
Λ

| 2
N

N

∑
i=1

UΛ
21iȲ2(Y1i −θ1i)|+ sup

Λ
| 2
N

N

∑
i=1

ρia1ia2i

N
|

≤ sup
Λ

| 2
N

N

∑
i=1

UΛ
21i(Y1i −θ1i)||Ȳ2|+ sup

Λ
| 2
N2

N

∑
t=1

a1ia2i|.

Following the technique in the proof of Theorem (3.1), it is obvious to see that

sup
Λ

| 2
N

N

∑
i=1

UΛ
21i(Y1i −θ1i)| → 0 in L2.

Moreover, E(Ȳ 2
2 ) =

1
N2 ∑N

t=1 a2
2i + ( 1

N ∑N
i=1 θ2i)

2, which is bounded by conditions C1-C3. So, by
Cauchy-Schwartz inequality we have

sup
Λ

| 2
N

N

∑
i=1

UΛ
21i(Y1i −θ1i)||Ȳ2| → 0 in L1.

Therefore, we have

sup
Λ

|I′3| → 0 in L1.

The same results hold for supΛ |II′3| and hence this completes the proof. �
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