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between two failure modes. The proposed model is applied to acceleration data, to simulation data sets and two
real data sets- bus tire data set and plastic substrate active matrix light-emitting diodes (AMOLED) data set,
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1. Introduction

The development of engineering and science technology have led to increased public awareness and
insistence on product quality, in addition to consumer production laws and regulations that concern
product reliability and profit consideration from the high costs of failures, repairs, and warranty
programs. Hence, the products become increasingly more reliable, with an extended product life.

Under these circumstances it is difficult to assess product reliability according to traditional
life-testing procedures based solely on time to failure under normal operation conditions. It is more
difficult to obtain sufficient time to failure data to estimate their lifetime efficiency.

In order to overcome this difficulty, reliability practitioners have attempted to design methods
that obtain failures quickly by exposing the products to acute environmental conditions without the
introduction of additional failure modes other than those observed under normal conditions. The
term accelerated life testing (ALT) describes these methods. ALT models can be categorized to
accelerated failure time (AFT) model where stresses take effect on the failure time multiplicatively,
the proportional odds (PO) model [3] that stresses take effect on an increased odds of failure rate, the
proportional hazard (PH) model [6] in which stresses take effect on the failure rate multiplicatively,
the extended hazard regression (EHR) model [5], the extended linear hazard regression (ELHR)
model [7], in which both AFT and PH models are incorporated, and the proportional odds (PO)
model [3] that stresses take effect on an increased odds of failure rate. Although ALT assesses
the lifetime characteristics of the components with high reliability, this procedure may involve the
collection of only a few failures.

To handle this problem, accelerated degradation testing (ADT) is considered as an alternative
method. ADT combines degradation testing with ALT by means of testing the products in harsh
environments and measuring the degradation of products during the acceleration test. In contrast
to the ALT method in which the failure time is recorded, in the ADT method, both the failure
information and degradation information may be obtained. As a result, the product reliabilities can
be estimated more accurately. However, this method is generally very costly and usually requires a
moderate sample size to be implemented. The ADT method also has its own difficulties in terms of
not being applicable for evaluating the lifetime of a newly developed or a very expensive product
with a few available units at hand. As a result, and to ensure enough failed units in a limited testing
period, it is more realistic to consider multiple stress-type accelerated life testing methods. Most
previous literature that discuss designing ALT/ADT plans have focused on the application of a
single stress type, which usually requires a long test duration, complicated stress level selection
process, large sample sizes, and high test costs. Literature about designing an ADT began at the end
of the last century. Key references that pertain to ALT and ADT include [19], [23] and [26].

Under this situation, a constant stress ADT is not applicable. Tseng et al. [30] have proposed a
step stress ADT (SSADT). In this accelerated life testing all samples are tested together under step
stresses, which lead to a shorter test duration and the need for a smaller sample size. SSALT/SSADT
is often preferred to constant stress ALT/ADT because it can avoid a high stress start point and
possibly additional, unrelated failure modes. Concise reviews of SSALT have been presented by
Nelson [19]. Liao [14] discussed how to efficiently design a SSADT experiment with an optimal
sample size and termination time. Numerous papers have been published following the gradual
development of degradation models. Park et al. [24] studied the optimum method of SSADT in the
case of destructive measurement. More general time-varying-stress ALTs were considered by [12]
and [2]. Turner [31], as well as Fan and Wang [10], discussed the statistical analysis of ALTs. Peng
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et al. [25] reported a model-based review of SSADT in terms of gradual development and improve-
ment of degradation models which were categorized as degradation path models and Markovian
models [17], and stochastic process based models [20].

Due to the existence of competing failure modes and non-applicability of studying test units
with isolated competing failure modes, it is necessary to evaluate each failure mode in the presence
of other modes by assuming some dependency structure between the failure modes. Recently, most
researches of SSADT plans are based on an underlying assumption of one mode of failure. How-
ever, due to the complexity of high reliable products, their reliability should be evaluated by more
than one mode of failure. Few works have focused on multiple degradation mechanisms or general
multiple mechanism failure. Overviews of joint modeling of failure times and degradation data, as
well as design problems have been discussed by [11], [15] and [21]. Liu and Qiu [16] proposed a
method for planning multiple step-stress ALT with competing risks. Pan and Sun [22] presented an
SSADT model with two performance characteristics based on gamma processes. Of note, in these
SSADT models, a common but unrealistic assumption of researchers is the independency of the
failure modes. However if the assumption of independence is violated, then the result may not be
trustworthy and could result in an inaccurate estimation of the products lifetime. In this paper, we
have extended the SSADT model proposed by Haghighi and Bae [11] in order to estimate reliability
function in the presence of dependent competing risks.

Numerous researchers have applied the copula method to the dependence analysis of compet-
ing failures in the SSALT method (However this has not been studied in SSADT.). Simon and
Wilke [27] presented an approach to the estimation of a nonparametric competing risk duration
model based on an assumed dependence structure and illustrated the framework by analyzing the
effect of reduced unemployment benefit entitlements on the duration of unemployment in Ger-
many. Eryilmaz [8] studied the problem of estimating the parameter of the common distribution of
component lifetime from a system lifetime data. It was assumed that the common component dis-
tribution was exponential, and that the component lifetimes were dependent through a completely
known exchangeable Archimedean copula. Few studies reported the statistics for ALT with depen-
dent competing failures. Although Xu and Tang [32] performed a pilot study on the statistics for
ALT on the basis of the copula, this study was only a special case with an exponential distribution
of all the competing failure modes; the copula was assumed to be a Gumbel copula, not a study with
more general applications.

As previously mentioned, failure modes are usually dependent because of coupling factors such
as running under the same working conditions. Therefore, the assumption that all the competing fail-
ure modes are independent is not true in practice. The statistics of SSADT based on this assumption
may lead to incorrect results for product lifetime and reliability. However this has not been studied.
In this paper, we propose a modeling approach for jointly analyzing linear degradation data and
dependent failure times simultaneously recorded during the SSADT. Under the modeling approach,
a step-stress accelerated test has been taken into account for unit failures with dependent multiple
modes (competing risks). In each level of stress under the SSADT, we assume that failure times,
their failure modes, and the amount of degradation at the moment of failures are recorded for failed
units. For the units that have not failed at the end of each step-stress, only the amount of degrada-
tion is recorded. We apply the copula model to combine the marginal distribution of the competing
failure models with the time to failure distribution of the products, and derived a general statis-
tical model for SSADT with dependent competing failures. It is widely believed that the copula
method is the most convenient and important tool for solving dependence problems. Finally, we
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have derived a likelihood function for failure-times from degradation data to provide maximum
likelihood estimates (MLEs) of the parameters of the proposed model and the reliability function.

This paper is organized as follows. In Section two, we describe the copula functions, the com-
peting risks framework in the SSADT method and express the likelihood and reliability funcrion.
In Section three, we provide three examples from simulation and real data in an attempt to compare
the efficiency of the SSADT plan proposed in this paper considering dependency between failure
modes using the copula functions and that given by [11]. In Section four we have performed sen-
sitivity analysis for the effect of chaning the copula function and the change-point of the stress on
parameter estimation under a simple SSADT. Finally, conclusion and possible directions for future
study are discussed in Section five.

2. The proposed model

This section is divided into three subsections. In the first subsection, we briefly explain the concept
of copula function and in the second subsection, we discuss SSADT in the competing risks frame-
work and give likelihood function in this method. In the third subsection, we describe a methodology
for step-stress reliability function.

2.1. Copula Function

There is a need for more realistic modeling of a stochastic dependency structure that contain all
information about dependent random variables, which goes beyond the measure of linear corre-
lation coefficients and has the capability to capture co-dependency outside the world of elliptical
distributions, particularly in situations where marginal functions are known and joint distributions
may be unknown. Alternative methods for capturing co-dependency have been considered. One
class of alternatives is the copula-based dependencies that have been introduced in statistical lit-
erature by [28]. This approach allows one to model the dependence structure independently of
marginal distributions. This approach provides an alternative and frequently more useful represen-
tation of multivariate distribution compared to traditional approaches such as multivariate normal-
ity. Note that an independent copula implies zero correlation but the opposite is false. Joe [13] and
Nelsen [18] have discussed this more thoroughly.

Formally, copulas can be defined as follows. Suppose that we have two marginal CDFs, GX1(x1),
FX2(x2) where X1, X2 are the random variables. Sklar’s theorem states that every bivariate cumulative
distribution function

H(x1,x2) = P(X1 ≤ x1,X2 ≤ x2),

of a random vector (X1,X2) can be expressed by involving only the marginals GX1(x1) and FX2(x2)

as

H(x1,x2) =C(GX1(x1),FX2(x2)),

where C is a copula. Differentiating with respect to x1,x2 leads to:

h(x1,x2) =
∂H(x1,x2)

∂x1∂x2
= fX1(x1).gX2(x2).c(GX1(x1),FX2(x2)),

where c(u1,u2) =
∂C(u1,u2)

∂u1∂u2
is the density of the copula C.
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The random variables X1 and X2 are said to be independent if:

C(GX1(x1),FX2(x2)) = GX1(x1).FX2(x2). (2.1)

According to Sklar’s canonical representation, if R be a 2-dimensional survival function with
margins R1,R2, then R has a copula representation:

R(x1,x2) = Č(R1(x1),R2(x2)), (2.2)

where Č is survival copula. Č is unique if the margins are continuous. The relation between copula
and survival copula is:

Č(u,v) = u+ v−1+C(1−u,1− v).

There are some 1-parameter copulas that can be used. For example: the elliptical family
(i.e. Gaussian, t) and Archimedean family (i.e. Frank, Gumbel, Clayton). One of the popular
Archimedean copulas is the Frank copula. It is a symmetric copula (for bivariate data) given by

Cθ (u,v) =− 1
θ

ln
(

1+
(exp(−θu)−1)(exp(−θv)−1)

exp(−θ)−1

)
.

Its generator is:

ϕθ (t) =− ln
(

exp(−θ t)−1
exp(−θ)−1

)
,

where: θ ∈ (−∞,∞)\{0}. In general, our motivations to use the Frank copula in joint modeling of
linear degradation and multiple dependent competing risks data are summarized as follows:

1) It has a simple closed form with one parameter.
2) It includes positive and negative dependency.
3) It has symmetric dependence.

In this paper, we use the Frank copula to describe the dependence of the degradation and hard failure
time. Č and C are equal in Frank copula. This dependency can be measured using copula parameter
θ . There is an explicit relation between the Kendall’s tau and the parameter of Frank copula (θ).
Specifically,

τθ = 1− 4
θ

(
1− 1

θ

∫ θ

0

t
exp(t)−1

dt
)
. (2.3)

The relations between copula parameter, θ , correlation coefficient, ρ , and Kendalls tau, τθ , are
given for some values of θ in Table 1.

Table 1. Relation between copula parameter and correlation coefficients

θ =−1 τθ =−0.1100185 ρ =−0.1644861

θ =−200 τθ =−0.9801645 ρ =−0.9995137
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2.2. The competing risks framework in the SSADT method

To express the framework of competing risks in SSADT, we must initially explain the concept of
SSADT. Suppose that degradation models are linear and the rate of degradation depends only on
current stress [30]. Although linear degradation has been considered by numerous authors, including
[29], it appears that the simultaneous analysis of degradation and failure-time data with multiple
failure modes is rare, especially when failure modes are dependent. This is attributed to the fact
that inference on the parameters in the joint model is complicated under an SSADT. The inference
procedure under the linear degradation model can be adapted to more general degradation models
under an SSADT. In this section, we use a cumulative exposure model for SSADT data. This model
is presented in [19].

Let n units be placed on the test. The testing time starts in τ0 = 0. All of the units are first
subjected to a normal stress, S0. Afterwards, at changing time stress τ1, all surviving units are
moved to the stress level S1 until time τ2. The stress on a unit is thus increased step by step until
it fails. So, we have a sequence of changing time points of stress τi, i = 0, . . . ,m+ 1. The levels of
stresses, S, can be expressed as:

S =


S0, τ0 < t ≤ τ1,

S1, τ1 ≤ t < τ2,
...

...
Sm, τm ≤ t < τm+1.

As previously mentioned, we consider the linear degradation process: {Z(t); t > 0} as Z(t) =
t/A,A ∈ R, where A is a random variable with a distribution function of FA(a;ηηη) for the q-
dimensional vector of parameters ηηη , which is influenced by stress levels. As a result, a density
function of A under the SSADT can be written as:

fA(a;ηηη) =


fA(a;ηηη0), under S0,

fA(a;ηηη1), under S1,
...

...
fA(a;ηηηm), under Sm,

where ηηη changes corresponding to the i-th level of stress for i = 0, . . . ,m. The degradation process
at time t under the SSADT can be written as:

Z(t|S) =


Z0(t|A(S0)) =

t−τ0
a0

, τ0 < t ≤ τ1,

Z1(t|A(S1)) =
τ1−τ0

a0
+ t−τ1

a1
, τ1 ≤ t < τ2,

...
...

Zm(t|A(Sm)) = ∑m
j=1

τ j−τ j−1
a j−1

+ t−τm
am

, τm ≤ t < τm+1,

(2.4)

where ai is the observed value of A in stress level Si, i = 0, . . . ,m.
Let Ti j be the failure time of i-th level of stress for the j-th unit, where i = 1, . . . ,m and j =

1, . . . ,ni and Zi js be degradation values at time Ti j. Suppose we have s failure modes at each level
of stress. Therefore failure time is defined as: Ti j = min{T 1

i j ,T
2

i j , . . . ,T
s

i j} where the failure-times
caused by each failure modes are dependent. The failure mode at the i-th level of stress for the j-th
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unit is denoted by:

Vi j =


1, if Ti j = T 1

i j ,
...

...
s, if Ti j = T s

i j,

Under SSADT, we observe the data set {Ti j,Vi j,Zi j}. Suppose that the rates of failures corre-
sponding to different failure mechanisms are increasing functions of degradation values (e.g., [15]).
Let λ k

i (z(t)) be the failure rate of the k-th failure mode at the i-th level of stress at time t. Then,
the conditional reliability function of the k-th failure mode at normal stress S0 given the value of
degradation can be derived as:

Rk
0(t|a0) = P(T k

0 > t|A = a0)

= exp
(
−
∫ t

0
λ k

0 (z(u))du
)
= exp

(
−
∫ t

0
λ k

0 (
u
a0

)du
)
, τ0 < t ≤ τ1.

Under a cumulative exposure model in a SSADT ( [30]) the failure time at time t under the i-th
level of stress due to the k-th failure mode has an equivalent failure-time, denoted by t⋆. This would
be the time that produces the same amount of cumulative degradation under normal stress. Thus,
the equivalent failure-time under normal stress t⋆ is a solution of the equation:

Zi(t|A(Si)) = Z0(t⋆|A(S0)), i = 1, . . . ,m. (2.5)

The equivalent failure-time t⋆ at normal stress S0 is derived from (2.4) and (2.5) as:

t⋆ = a0

[
i

∑
j=1

τ j − τ j−1

a j−1
+

t − τi

ai

]
. (2.6)

According to [11], the failure rate at time t and the conditional reliability function corresponding
to the k-th failure mode are given by:

λ k
i (z(t)) =


λ k

0 (z(t)), τ0 < t ≤ τ1,

λ k
1 (z(t)) =

a0
a1

λ k
0 (z(t)), τ1 ≤ t < τ2,

...
...

λ k
m(z(t)) =

a0
am

λ k
0 (z(t)), τm ≤ t < τm+1.

Rk
i (t|aaai) =


Rk

0(t|aaa0), τ0 < t ≤ τ1,

Rk
1(t|aaa1) = Rk

0(τ1 +
a0
a1
(t − τ1)|aaa1), τ1 ≤ t < τ2,

...
...

Rk
m(t|aaam) = Rk

0

(
a0

[
∑m

j=1
τ j−τ j−1

a j−1
+ t−τm

am

]
|aaam

)
, τm ≤ t < τm+1.

Let T = min(T 1, ..,T s) be the failure time of unit under dependent competing risks. Our goal is
to model the reliability function of T. Denote the reliability function by RT (.). We have:

RT (t) = P(T > t) = P(min(T 1, . . . ,T s)> t) = R(t, . . . , t). (2.7)

When failure modes are dependent, we use the crude hazard function (λ (k)(t)) instead of
marginal hazard function (λ k(t)). The crude hazard function known as the ’cause-specific hazard
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rate’, is defined as:

λ (k)(t) = lim
∆t→0

P(t ≤ T k < t +∆t|T ≥ t)
∆t

=
1

RT (t)
f (k)(t), (2.8)

where

f (k)(t) =− ∂
∂ tk R(t1, . . . , ts)|t j=t,∀ j, (2.9)

is the crude density function and components of (t1, . . . , ts) are the observation of (T 1, . . . ,T s).
According to [9], the crude hazard function λ (k)(t) does not usually coincide with the marginal
hazard λ k(t), which is defined as:

λ k(t) = lim
∆t→0

P(t ≤ T k < t +∆t|T k ≥ t)
∆t

=− d
dt

logRk(t),

where Rk(t) is the marginal reliability function. An exception is when the failure modes are mutually
independent, but in most cases this assumption is unreasonable. Let competing risks be dependent.
We use a copula modelling approach for specifying this dependency structure. According to (2.2),
equation (2.7) in Frank copula become:

R(t1, . . . , ts) = Č(R1(t1), . . . ,Rs(ts)) =C(R1(t1), . . . ,Rs(ts)), (2.10)

where Č is the survival copula. To solve the problem of identifiability, [4] used copula to character-
ize the relationship between the crude reliability functions and the marginals hazard functions. He
showed that if the marginal Rk(tk) are continuous then C exists and is unique. In the following, we
confine this study to the simplest situation of only two causes of failure (i.e., k = 2).

Analysis of reliability function requires that we choose a class of copulas. We use Franks family
of copulas.

According to (2.9) and (2.10), the crude density functions can then be written as:

f (k)(t) = λ k(t)Rk(t)
exp(−θRk(t))[exp(−θR3−k(t)−1)]

(exp(−θ)−1)exp(−θRT (t))
, k = 1,2, (2.11)

where θ ̸= 0 and

RT (t) =− 1
θ

log
[

1+
(exp(−θR1(t))−1)(exp(−θR2(t))−1)

(exp(−θ)−1)

]
. (2.12)

As mentioned earlier, λ k(t) and λ (k)(t) do not coincide when failure modes are dependent. From
(2.8) and (2.9), we can obtain the relation between them as following:

λ (k)(t) =
λ k(t)Rk(t)exp(−θRk(t))[exp(−θR3−k(t)−1)]

C(R1(t),R2(t))(exp(−θ)−1)exp(−θC(R1(t),R2(t)))
, k = 1,2, (2.13)

From the observed data at the end of each step of test and (2.8), (2.11) and (2.13), the likelihood
function is obtained as the following form:
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L =
m

∏
i=0

ni

∏
j=1

2

∑
k=1

III(Vi j = k) f (k)i (ti j)

=
m

∏
i=0

ni

∏
j=1

2

∑
k=1

III(Vi j = k)λ (k)
i (zi j;γγγk)C(R1(ti j), . . . ,Rk(ti j)|ai j;γγγk) fAi(ai j;ηηη)

=
m

∏
i=0

ni

∏
j=1

2

∑
k=1

III(Vi j = k)λ k(zi j;γγγk)R
k(ti j)

exp(−θRk(ti j))[exp(−θR3−k(ti j)−1)]
(exp(−θ)−1)exp(−θC(R1(ti j), . . . ,Rk(ti j)|aaai j;γγγk))

fAi(ai j;ηηη)

=
m

∏
i=0

ni

∏
j=1

2

∑
k=1

III(Vi j = k)(a0 j/ai j)λ k
0 (zi j;γγγk)R

k
0(t

⋆
i j)

exp(−θRk
0(t

⋆
i j))[exp(−θR3−k

0 (t⋆i j)−1)]

(exp(−θ)−1)exp(−θC(R1
0(t

⋆
i j), . . . ,R

k
0(t

⋆
i j)|aaai j;γγγk))

fAi(ai j;ηηη)

(2.14)

where γγγk is q-dimensional vector of parameters that correspond to the k-th competing risk, III(((...)))
is an indicator function, ai j is an observed value of A for the j-th unit at the i-th level of stress,
aaai j ≡ (a0 j,a1 j, . . . ,ai j)

T , and fAi(aaai j;ηηη) = ∏i
l=0 fA(al j;ηηη l), for i = 0, . . . ,m.

The MLEs of γγγ ≡ (γγγ1, . . . ,γγγs)
T and ηηη ≡ (ηηη0, . . . ,ηηηm)

T , denoted by γ̂γγ and η̂ηη , cannot be obtained
in closed form, thus a numerical method is required. To maximize the likelihood function, we use
the function ’nlminb()’ in software R.

When we ignore the dependency between failure modes, the likelihood function changes to:

L =
m

∏
i=0

ni

∏
j=1

2

∑
k=1

III(Vi j = k)λ k
i (zi j;γγγk)×

[
s

∏
k=1

Rk
i (ti j|aaai j;γk)

]
fAi(ai j;ηηη)

=
m

∏
i=0

ni

∏
j=1

2

∑
k=1

III(Vi j = k)(a0 j/ai j)λ k
0 (zi j;γγγk)

×

[
s

∏
k=1

Rk
0

(
a0 j

(
i

∑
l=1

τl − τl−1

a(l−1) j
+

tl − τi

ai j

)
|aaai j;γk

)]
fAi(ai j;ηηη),

(2.15)

that is due to equation (2.1).
In order to prove the identifiability of likelihood function L, we show the identifiability of

f (k)i (t). According to (2.3), τθ is a monotonic function in θ , [9]. Thus if θ1 ̸= θ2 then Cθ1(u,v) ̸=
Cθ2(u,v) for all (u,v) when Cθ (., .) is Frank copula. According to equation (2.8), it follows that if
θ1 ̸= θ2 then f (k)i (t|θ1) ̸= f (k)i (t|θ2).

348

 
___________________________________________________________________________________________________________

Journal of Statistical Theory and Applications, Vol. 17, No. 2 (June 2018) 340–358



2.3. Step-Stress Reliability Function

The unconditional reliability (survival) function can be defined as:

R(t) = P(T > t) =
∫ ∞

0
P(T > t|A = a)dFA(a,ηηη0)

=
∫ ∞

0
P(T 1 > t, . . . ,T s > t|A = a)dFA(a,ηηη0)

=
∫ ∞

0
C(R1(t), . . . ,Rs(t)|A = a)dFA(a,ηηη0)

Thus the estimate of reliability function is:

R̂(t) =
∫ ∞

0
Ĉ(R1(t), . . . ,Rs(t)|A = a)dFA(a, η̂ηη0) (2.16)

3. Examples

3.1. Simulation Study

In order to illustrate the proposed method, we generated n data sets under SSADT by considering
a simple step-stress test with a changing time point of τ1 = 40. We suppose that the failure rates
of two failure modes depends on the amount of degradation as λ k(z(t)) = (θkz(t))νk for k = 1,2.
In addition, we assume that the distribution of A in Z = t/A is Weibull with parameters α = 5 and
β = 4.

For different sample sizes n = 30,50,80,200, given parameter values θ1 = 0.06,ν1 = 5,θ2 =

0.06 and ν2 = 5, we generated n random samples with B = 1000 replications based on the following
steps. We consider the dependency between failure modes using Frank copula with parameter θ =

20.

Step 1: Generate random sample U of size n, where U ∼Uni f orm(0,1).
Step 2: Transform U , into the failure times T , based on the equation (2.12):

U =− 1
θ

log
[

1+
(exp(−θR1(t))−1)(exp(−θR2(t))−1)

(exp(−θ)−1)

]
where R1,R2 are the marginal reliability function of T 1,T 2.

Step 3: Generate random sample A of size n, where A ∼Weibull(5,4).
Step 4: Transform A, into the degradation Z, based on Z = T/A.

Then, we transform data in normal use into the accelerated data with a changing time point of
τ1 = 40. Let a0 j,a1 j denote the values of A for the j-th unit at the first (normal) and second level
of stress. We observe a0 j according to linear degradation path as t0 j/z0 j, where t0 j, and z0 j are
failure time and degradation of j-th unit at normal stress, but a1 j has been generated from a Weibull
distribution with parameters α = 8,β = 5.5. From (2.6) and simulated a1 j, the failure times in
second level of stress can be computed.

The estimation of parameters of failure rates (θ1,ν1,θ2,ν2), the parameters of Ai, (α0,β0), and
the copula parameter, θ , have been obtained using a numerical solution of the likelihood functions
(2.14) and (2.15). Table 2 shows estimation results in two cases: independent and dependent failure
modes. The estimated median of the lifetime (M̂), which is derived from (2.16) (R(t̂0.5) = 0.5), is
shown in the Table 2. According to Table 2, it can be seen that the estimated parameters are different
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for the cases with and without dependency when the sample size is small. According to (2.3) and
estimation of the copula parameter in Table 2, the dependency between failure modes is significant.
The results provide insight into the sampling behavior of the estimators. They indicate that the
MLEs approximate the true values of the parameters as the sample size n increases. Similarly, the
standard errors (SE) and mean relative errors (MRE) decrease with increasing the sample size.

Table 2. The MLEs of the parameters, and the associated SE and MRE for different sample sizes (θ1 = 0.06 , ν1 = 5,
θ2 = 0.06, ν2 = 5, θ = 20)

Dependent Independent

n Param. Estimate SE MRE Estimate SE MRE

n=30 α0 5.149 0.774 0.130 5.149 0.774 0.130
β0 3.964 0.161 0.031 3.964 0.161 0.031
θ1 0.059 0.009 0.105 0.038 0.026 0.403
ν1 5.411 1.199 0.193 4.006 2.502 0.426
θ2 0.060 0.006 0.080 0.035 0.025 0.424
ν2 5.626 1.262 0.216 3.663 2.319 0.405
θ 13.18 13.42 0.595 - - -
τθ 0.734 - 0 - -
M 38.76 - - 41.34 - -

n=50 α0 5.139 0.572 0.092 5.139 0.572 0.092
β0 3.996 0.114 0.023 3.996 0.114 0.023
θ1 0.059 0.005 0.067 0.037 0.024 0.399
ν1 5.228 0.893 0.136 3.628 2.193 0.389
θ2 0.059 0.005 0.068 0.039 0.023 0.345
ν2 5.208 0.873 0.136 3.953 2.151 0.348
θ 16.33 12.45 0.547 - - -
τθ 0.779 - 0 - -
M 38.35 - - 40.08 - -

n=80 α0 5.098 0.468 0.073 5.098 0.468 0.073
β0 3.995 0.096 0.019 3.995 0.096 0.019
θ1 0.059 0.004 0.057 0.037 0.024 0.390
ν1 5.151 0.673 0.104 3.594 2.082 0.362
θ2 0.059 0.004 0.055 0.040 0.023 0.338
ν2 5.186 0.683 0.108 3.937 2.072 0.322
θ 16.59 12.27 0.536 - - -
τθ 0.782 - - 0 - -
M 38.13 - - 39.74 - -

n=200 α0 5.048 0.278 0.044 5.048 0.278 0.044
β0 4.000 0.061 0.012 4.000 0.061 0.012
θ1 0.059 0.003 0.036 0.053 0.003 0.110
ν1 5.080 0.408 0.065 4.987 0.511 0.082
θ2 0.059 0.003 0.035 0.053 0.003 0.111
ν2 5.084 0.402 0.064 4.975 0.508 0.080
θ 18.50 10.35 0.499 - - -
τθ 0.803 - - 0 - -
M 37.85 - - 37.48 - -
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The estimate of reliability function (R̂(t)) in two dependent and independent cases was also
derived. In the dependent case, R̂(t) has been derived from (2.16). Figure 1 shows the reliability
functions estimated using the proposed method in both dependent and independent cases (solid and
dashed lines) with different sample sizes. They indicate that increasing the sample size decreases
the difference between two curves. Figure 2 shows also the estimated reliability function in depen-
dent case for simulation data with one thousand replications. It shows that the estimated reliability
functions close together as the sample size increases.

(a) n = 30 (b) n = 50

(c) n = 80 (d) n = 200

Fig. 1. The estimated reliability function in a dependent (solid line) and an independent (dashed line) case under the
simple SSADT for simulation data with different sample sizes

3.2. Real Data

In this section, we transform two sets of real data into SSADT data by considering a simple step-stress test
with a changing time point.

3.2.1. Bus tire data

We use real data collected from 53 bus tires in a normal use environment as presented in a study by [1] who
have reported tire wear with two different failure modes: protector zone and side zone. These two failure
modes are dependent since the failure rate of both of them depends on degradation.

The method is similar to the previous section with respect to a changing time point of τ1 = 60. According
to τ1, 33 out of 53 failure times were at the use stress (S0). As in the previous section, a0 j,a1 j are the values
of A for the j-th unit at the first (normal) and second level of stress, where a1 j has been generated from a
Weibull distribution with shape parameter, α = 10.60, and scale parameter, β = 4.50. According to the data
at normal stress, the estimation of shape and scale parameters are: α = 11.1190,β = 4.4826.Table 3 shows
the failure times and corresponding degradation data at each level of stresses.

All model parameters,(α0,β0,θ1,ν1,θ2,ν2,θ), have been estimated using a numerical solution of the
likelihood functions (2.14) and (2.15) and reported in Table 4. The last column of Table 4 is the estimated
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(a) n = 30 (b) n = 50

(c) n = 80 (d) n = 200

Fig. 2. The estimated reliability function in dependent case under the simple SSADT for simulation data with one thou-
sand replications

Table 3. Time failures and corresponding degradation data at the first and second level of stress for the bus tire data

S0

V = 1 T 36.8 47.3 50.8 51.0 51.2 52.1 53.0 53.8 54.3 55.0 55.2
56.2 56.8 56.9 57.1 57.4 57.9 58.3 58.6 59.3 59.6

Z(t) 9.5 13.4 13.4 12.1 11.3 12.1 12.8 12.5 13.4 13.0 12.8
13.3 13.3 13.2 12.0 12.7 10.8 12.2 12.1 13.4 13.4

V = 2 T 50.0 51.0 51.7 51.7 55.0 55.0 56.0 56.6 58.1 58.9 59.0
59.2

Z(t) 13.3 13.1 12.5 13.2 13.1 13.2 12.5 13.2 13.2 11.7 14.0
13.2

S1

V = 1 T 60.083 61.236 62.879 63.658 65.331 65.346 67.425 68.222 70.700 75.961
Z(t) 12.7 13.6 14.5 13.5 14.1 12.8 13.2 12.9 14.2 15.0

V = 2 T 61.311 65.338 65.473 65.609 65.759 69.664 70.457 73.064 73.182 74.588
Z(t) 13.6 13.2 13.8 13.7 13.3 13.6 13.6 15.0 15.0 15.0

median of the lifetime (M̂). According to (2.3), τθ = 0.81. The estimate of reliability functions was also
derived. Figure 3 shows the reliability functions estimated using a Nelson-Aalen nonparametric method
(dashed line) and the proposed method in both dependent and independent cases (dotted and solid lines).
As we know, the nonparametric estimator of the survival function is weaker than the parametric estima-
tors (dependent and independent case) due to the lack of distribution, and therefore it estimates the survival
function more cautious, thus it is above the other curves. The nonparametric curve is closer to independent
estimates, because as seen in Figure 1, estimating the reliability function in a dependent case is always lower
than its estimation in the independent case. The difference between the two curves (solid and dotted lines)
is obvious in Figure 3. As we see, ignoring dependency between failure modes led to overestimation of the
reliability function.
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Table 4. The estimation of parameters with and without dependency for the bus tire data

α0 β0 θ1 ν1 θ2 ν2 θ M

Dependent case 11.119 4.4826 0.0655 12.168 0.0663 13.046 20.22 55.88

Independent case 11.119 4.4826 0.0616 11.611 0.0647 17.269 – 56.79

Fig. 3. Nonparametric (dashed line) and parametric estimated reliability function in a dependent (solid line) and an
independent (dotted line) case under the simple SSADT for bus tire data

3.2.2. AMOLED data

In the second example, the real data was collected from plastic substrate active matrix organic light emitting
diode (AMOLED). AMOLED is an attractive light device compared to other display devices. In order to
achieve SSADT data, the luminance degradation is accelerated using temperature. In this set of data, two
failure modes (the organic layer peel-off from the substrate and delamination) expedited by temperature could
be observed. We have assumed that the two failure modes are dependent. In the AMOLED data we have 20
failure times with corresponding degradation and different failure modes. The data are reported in [11] and
shown in Table 5. The simulated failure times in the second level stress are obtained with a changing time
point of τ1 = 1800 [13 failure times are in normal stress level (below 1800)] and the failure rate of each
failure time depended on degradation data similar to the previous example.

A Weibull distribution with shape and scale parameters α = 10.749,β = 16.381 was fit to a0 j, j =
1, . . . ,13. The a1 j were also generated according to a Weibull distribution with shape parameter 2.79 and
scale parameter 10. The estimate of all parameters (α0,β0,θ1,ν1,θ2,ν2,θ) and the median of the lifetime M̂
are listed in Table 6. As we see, these estimations are different with and without considering dependency. We
can calculate the dependency of failure modes using (2.3) (τθ = 0.86). The estimate of reliability functions is
shown in Figure 4. Ignoring dependency between failures modes has led to an overestimation of the reliability
function.
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Table 5. Failures and corresponding degradation data at the first and second level of stress for the AMOLED data

S0

V = 1 T 1294.4 1462.4 1593.6 1713.4
Z(t) 90.42 97.37 88.49 95.18

V = 2 T 1565.8 1414.9 1592.7 1141.4 1514.4 1505.0 1509.6 1517.3 1267.1

Z(t) 97.30 93.08 90.82 97.80 97.42 96.02 93.28 90.24 98.43

S1

V = 1 T 2074.708 2400.158 1884.541 1883.251 1978.770 1872.205
Z(t) 90.20 87.37 84.46 85.27 76.87 91.69

V = 2 T 1824.737
Z(t) 97.067

Table 6. The estimation of parameters with and without dependency

α0 β0 θ1 ν1 θ2 ν2 θ M

Dependent case 10.749 16.38 0.0067 11.92 0.008 20.96 27.62 1765.95

Independent case 10.749 16.38 0.0074 14.59 0.0096 48.70 – 1844.03

Fig. 4. Nonparametric (dashed line) and parametric estimated reliability function in a dependent (solid line) and an
independent (dotted line) case under the simple SSADT for AMOLED data

4. Sensitivity analysis

In this section, we performed two sensitivity analyses. The first analysis explored the effects of changing the
copula function on parameter estimation. In the second sensitivity analysis, we sought to explore the impact
of the change in change-point of the stress on the parameter estimation under a simple SSADT.

4.1. The effect of changing the copula function on parameter estimation

In order to investigate the effect of changing the copula function on parameter estimation, we applied both
simulated and real data. Initially, we conducted a simulation study. The data were generated according to the
different copulas (Frank, Clayton, and Gumble) following Section 3, Steps 1-4, where: α0 = 5, β0 = 4, θ1 =
0.06, ν1 = 5, θ2 = 0.06, ν2 = 5, θ = 20 and n = 30. Table 7 shows the estimated parameters. We determined
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that the Frank copula was more appropriate based on the actual value of the parameters, in addition to SE and
MRE of the estimators.

Table 7. The MLEs of the parameters, and the associated SE and MRE for n = 30 in different copula

(α0 = 5 , β0 = 4, θ1 = 0.06, ν1 = 5, θ2 = 0.06, ν2 = 5, θ = 20)

Copula Parameter Estimate SE MRE

Frank α0 5.1135 0.5686 0.0962
β0 3.9790 0.1520 0.0299
θ1 0.0602 0.0073 0.0923
ν1 5.3335 1.1876 0.1744
θ2 0.0605 0.0068 0.0870
ν2 5.2527 0.9841 0.1628
θ 17.2259 14.0303 0.6130

Clayton α0 5.0971 0.8331 0.1171
β0 3.9793 0.1567 0.0318
θ1 0.0560 0.0084 0.1049
ν1 4.7304 1.1916 0.1917
θ2 0.0555 0.0081 0.1058
ν2 4.6548 1.1062 0.1852
θ 30.4304 44.2251 2.1881

Gumble α0 5.2004 0.7574 0.1205
β0 3.9692 0.1555 0.0321
θ1 0.0649 0.0085 0.1290
ν1 6.1629 1.6670 0.2954
θ2 0.0655 0.0103 0.1448
ν2 6.2595 1.7361 0.3278
θ 50.313 60.86 5.4178

Additionally, we used real data based on the original bus tire data set to further investigate the effect of
changing the copula function on parameter estimation, [1]. The assumption of dependency between failure
modes was valid because we supposed that the failure rates of two failure modes depended on the amount
of degradation. We fixed the value of τ1 at 62. Then, we generated accelerated failure times to determine
the MLE of the parameters by using numerical methods with 2000 replications. Table 8 lists the results. The
simulated and real data examples provided evidence that the parameters of ν1,ν2 and θ , were mostly affected
by changing the copula function.

Table 8. The estimation of parameters using different copula function

Copula function α0 β0 θ1 ν1 θ2 ν2 θ M

Frank 11.5890 4.5013 0.0637 11.6177 0.0657 13.5076 30.1010 56.886

Clayton 11.5890 4.5013 0.0647 13.0798 0.0644 13.3472 89.1893 57.1095

Gumble 11.5891 4.5013 0.0678 16.6345 0.0656 13.7697 25.1193 57.4576
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4.2. The effect of the change-point of the stress on parameter estimation

In this section, we investigate the effect of the change-point of the stress on parameter estimation based on
the original data set of bus tire data, [1]. Like the previous section, we generate accelerated failure times and
estimate the parameters of likelihood function using numerical methods with 2000 replications. These steps
are repeated for different values of τ1. The results are shown in Table 9. It is observed that, the change-point
of stress has little effect on the estimates of (θ1,ν1,θ2,ν2,θ) , but the effect on the estimates of (α0,β0,M)
is significant.

Table 9. The effect of changing point on the estimation precision with 2000 replications

τθ 58 60 62 64 66 68 70

n01 17 21 23 24 26 27 28

n02 8 12 13 13 14 15 18

n11 14 10 8 7 5 4 3

n12 14 10 9 9 8 7 4

α̂0 10.3883 11.1190 11.5890 11.6889 11.9279 11.5398 11.1419

β̂0 4.3935 4.4826 4.5013 4.4992 4.5237 4.5826 4.6611

θ̂1 0.06365 0.06361 0.06368 0.06371 0.06375 0.06357 0.06352

ν̂1 11.5847 11.5581 11.6177 11.6647 11.7882 11.6169 11.5299

θ̂2 0.06564 0.0656 0.06570 0.06572 0.06541 0.06581 0.06571

ν̂2 13.4500 13.4081 13.5076 13.5613 13.3389 13.7345 13.5154

θ̂ 30.6017 30.4961 30.1010 30.1349 31.42179 30.3591 32.8662

M̂ 55.369 56.555 56.886 56.9045 57.3392 57.9129 58.6766

5. Conclusion and further work

SSADT is one of the most commonly used methods for reducing the required sample size. When we have
multiple failure modes in SSADT, it is important to take into account the dependency between them. This arti-
cle has proposed a modeling approach for simultaneously analyzing dependent failure modes and degradation
data under the SSADT. According to this method, we can estimate the reliability function in a dependent case
and compare the differences between the dependent and independent cases. This difference is significant in
dependent failure modes. Sensitivity analysis also shows that changing the copula function and change-point
of the stress affects on a small number of parameters.

In this article, we have assumed that the degradation is linear; failure rates depend on degradation and
do not make any assumption about the failure-time distribution. For further analysis, we can change these
assumptions. For example, we can consider nonlinear degradation or other forms of failure rates, such as:
λ k(z(t)) = γk +(θkz(t))νk .
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