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                                                                                    Abstract 

 In this paper, Bayes estimators of the unknown shape parameter of the exponentiated moment exponential 

distribution (EMED)have been derived by using two informative (gamma and chi-square) priors and two non-

informative (Jeffrey’s and uniform) priors under different loss functions, namely, Squared Error Loss function, 

Entropy loss function and precautionary Loss function. The Maximum likelihood estimator (MLE) is obtained. 

Also, we used two real life data sets to illustrate the result derived. 

Keywords: Exponentiated Moment Exponential distribution; Maximum Likelihood Estimator; Bayesian estimation; 
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1.  Introduction 

 

The exponentiated exponential distribution is a specific family of the exponentiated Weibull 

distribution. In analyzing several life time data situations, it has been observed that the dual parameter 

exponentiated exponential distribution can be more effectively used as compared to both dual parameters of 

gamma or Weibull distribution. When we consider the shape parameter of exponentiated exponential, gamma 

and Weibull is one, then these distributions becomes one parameter exponential distribution. Hence, these 

three distributions are the off shoots of the exponential distribution. Moment distributions have a vital role in 

mathematics and statistics, in particular probability theory, in the viewpoint research related to ecology, 

reliability, biomedical field, econometrics, survey sampling and in life-testing. One of such distributions is the 

two-parameter weighted exponential distribution introduced by [8]. [3] Proposed a distribution function of 

moment exponential distribution and developed some basic properties like moments, skewness, kurtosis, 

moment generating function and hazard function. Bayes estimators for the weighted exponential distribution 

(WED) was considered by [6] while [1] compare the priors for the exponentiated exponential distribution 

under different loss functions. [13] Obtained the Bayes estimators of length biased Nakagami distribution. [9] 

Proposed exponentiated moment exponential distribution (EMED) with cdf given by 
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where  is the shape parameter and  is the scale parameter and exponentiated moment exponential 

distribution and is denoted by EMED ),(  . 

The probability density function (pdf) is defined as 
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The graphs of pdf for various values of shape and scale parameters are 

 
 

The corresponding reliability function is given by 
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and the hazard function is  
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2.  Maximum likelihood Estimation for the shape Parameter   of Exponentiated Moment Exponential 

distribution (EMED) assuming scale parameter β is to be known 

 

Let us consider a random sample ),...,,( 21 nxxxx   of size n from the Exponentiated Moment 

Exponential Distribution. Then the likelihood function for the given sample observation is 
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The log-likelihood function is 
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As scale parameter  is assumed to be known, the ML estimator of shape parameter   is obtained by solving 

the 
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3. The Posterior Distribution of unknown parameter α of Exponentiated Moment Exponential 

distribution (EMED) using Non-Informative Priors 

Bayesian analysis is performed by combining the prior information )(g and the sample information

),,,( 21 nxxx  into what is called the posterior distribution of given nxxxx ,,, 21   from which all 

decisions and inferences are made. So )|( xp  reflects the updated beliefs about  after observing the sample

.,,, 21 nxxxx   

The posterior distributions using non-informative priors for the unknown parameter  of on 

exponentiated moment exponential distribution are derived below: 

3.1 Posterior Distribution Using Uniform Prior 

An obvious choice for the non-informative prior is the uniform distribution. Uniform priors are 

particularly easy to specify in the case of a parameter with bounded support. The uniform prior of is defined 

as: 

  0,1)(1g                      
)1.3(  

The posterior distribution of parameter  for the given data ),,,( 21 nxxxx  using (2.1) and (3.1) is: 
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Where k is independent of .  
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which is the density kernel of gamma distribution having parameters )1(1  n and
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 So the posterior distribution of ).,(~)|( 11  Gx  

3.2 Posterior Distribution Using Jeffrey’s prior 

A non-informative prior has been suggested by Jeffrey’s, which is frequently used in situation where 

one does not have much information about the parameters. This defines the density of the parameters 

proportional to the square root of the determinant of the Fisher information matrix, symbolically the Jeffrey’s 

prior of  is: 

)()(2  Ig   

The Jeffrey’s prior for the shape parameter  of the EMED is derived which is: 
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The posterior distribution of parameter  for the given data ),,,( 21 nxxxx  using (2.1) and (3.4) is: 
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which is the density kernel of gamma distribution having parameters and2 n
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4. The Posterior Distribution of unknown parameter αof Exponentiated Moment Exponential 

distribution (EMED) Using Informative Priors 

Here we use gamma and Chi-square distribution as informative prior because they are compatible 

with the parameter  of the EMED. The posterior distributions using informative priors for the unknown 

parameter  of the EMED are derived below: 

4.1 Posterior Distribution Using Gamma Prior 

A way to guarantee that the posterior has an easily calculatable form is to specify a conjugate prior. 

Conjugacy is a joint property of the prior and the likelihood function that provides a posterior from the same 

distributional family as the prior. Gamma distribution is the conjugate prior of the EMED. The gamma 

distribution is used as an informative prior with hyper parameters a and b , having the following p.d.f: 
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The posterior distribution of parameter  for the given data ),,,( 21 nxxxx  using (2.1) and (4.1) is: 
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4.2 Posterior Distribution Using Chi-square Prior 

 Another informative prior is assumed to be the Chi-square distribution with hyper parameter
2a , which 

has the following p.d.f: 
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The posterior distribution of parameter  for the given data ),,,( 21 nxxxx  using (2.1) and (4.4) is: 
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5 Comparison of priors with respect to posterior variances: 

The variances of the posterior distribution under all assumed priors is given by 
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6. Bayesian estimation of unknown shape parameter α under different loss functions 

 

This section discusses the different Bayes estimators using the loss functions; Squared Error loss function 

(SELF), Entropy Loss Function (ELF), and precautionary loss function (PLF). While SELF is symmetric, 

ELF and PLF are asymmetric loss functions: 

1. Squared Error loss function (SELF): A commonly used loss function is the SELF given by 
2)ˆ(),ˆ(   cl , 

 which is symmetric loss function that assigns equal losses to over estimation and under estimation. The SELF 

is often used because it does not need extensive numerical computation. 

2. Entropy Loss Function (ELF): The ELF proposed by Calabria and Pulcini (1994) is a useful 

asymmetric lossfunction given by ]1)log([)(   pL pp
 where    ˆ  and p>0, whose 

minimum occur at  ˆ . Also, this loss function )(L has been used by [4] and [5], in the original form 

having p =1. Thus, )(L can be written as 

.0;]1)log([)( 22  ccL   

3. The Precautionary Loss Function (PLF): [12] introduced an alternative asymmetric precautionary loss 

function, and also presented a general class of precautionary loss functions as a special case. These loss 

functions approach infinitely near the origin to prevent under estimation, thus giving conservative 

estimators, especially when low failure rates are being estimated. A very useful and simple asymmetric 

precautionary loss function is given by 
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7. Bayesian Estimation of α under the Assumption of uniform prior 

7.1 Estimation under Squared Error loss function 

By using squared error loss function 
2)ˆ(),ˆ(   cl for some constant c the risk function is 

given by 
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7.2 Estimation under Entropy loss function 

By using entropy loss function  1log)( 2   cL for some constant c2 the risk function is given 

by 
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 7.3 Estimation under precautionary loss function 

By using precautionary loss function 
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l  the risk function is given by 
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8. Bayesian Estimation of αunder the Assumption of Jeffery’s Prior 

8.1 Estimation under Squared Error loss function 

By using squared error loss function 
2)ˆ(),ˆ(   cl for some constant c the risk function is 

given by 
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8.2 Estimation under Entropy loss function 

By using entropy loss function  1log)( 2   cL for some constant c2 the risk function is 

given by 
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8.3 Estimation under precautionary loss function
 

By using precautionary loss function 
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9. Bayesian Estimation of α under the Assumption of Gamma Prior 

9.1 Estimation under Squared Error loss function 

By using squared error loss function 
2)ˆ(),ˆ(   cl for some constant c the risk function is 

given by 
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9.2 Estimation under Entropy loss function 

By using entropy loss function  1log)( 2   cL for some constant c2 the risk function is 

given by 
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9.3 Estimation under precautionary loss function 

By using precautionary loss function 
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l  the risk function is given by 
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R , we obtain the Bayes estimator as 
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10. Bayesian Estimation of α under the Assumption of Chi-square Prior 

10.1 Estimation under Squared Error loss function 

By using squared error loss function 
2)ˆ(),ˆ(   cl for some constant c the risk function is 

given by 
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10.2 Estimation under Entropy loss function 

By using entropy loss function  1log)( 2   cL for some constant c2 the risk function is 

given by 
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10.3 Estimation under precautionary loss function 

By using precautionary loss function
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11. Applications 

To compare the performance of the estimates under differentloss functions for the exponentiated 

moment exponential distribution, two real data sets are used and analysis performed with the help of R 

software. 

Data set I: The first data set consists of 100 observations on breaking stress of carbon fibers (in Gba). The 

data has been previously used by [11], the data is as follows: 
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3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 

4.90, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 

2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 

3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 

2.17, 1.69, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 2.12, 

1.89, 2.88, 2.82, 2.05, 3.65 

 
            Table 1.  Bayes Estimates of  under Uniform Prior 

 
 

 

 

 

 

 

Table 2.  Bayes Estimates of  under Jeffrey Prior 

 

 

 

 

 

 

 

Table 3.  Bayes Estimates of  under Gamma Prior 

 

 

 

 

 

 

 

 

 

 

 

 
 

  MLE SELF ELF PLF 

3.0 0.59076 0.59667 0.59076 0.59962 

3.5 0.51957 0.52476 0.51957 0.52735 

4.0 0.46866 0.47335 0.46866 0.47569 

4.5 0.43033 0.43463 0.43033 0.43678 

  MLE SELF ELF PLF 

3.0 0.59076 0.59076 0.58485 0.59371 

3.5 0.51957 0.51957 0.51437 0.52216 

4.0 0.46866 0.46866 0.46398 0.47100 

4.5 0.43033 0.43033 0.42603 0.43248 

  a  b  MLE SELF ELF PLF 

3.0 1.4 0.4 0.59076 0.59762 0.59173 0.60056 

3.5 1.4 0.4 0.51957 0.52575 0.52056 0.52833 

4.0 1.4 0.4 0.46866 0.47433 0.46966 0.47666 

4.5 1.4 0.4 0.43033 0.43561 0.43131 0.43775 
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Table 4. Bayes Estimates of  under Chi-square Prior 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Bayes Risk of  under Uniform Prior 

 

 

 

 

 

 

 

 

 

 

 

 

                              Table 6. Bayes Risk of  under Jeffrey Prior 

 

 

 

 

 

 

 

 

Table 7. Bayes Risk of  under Gamma Prior 

 

 

 
 

 

  
2a  MLE SELF ELF PLF 

3.0 0.3 0.59076 0.58991 0.58401 0.59284 

3.5 0.3 0.51957 0.51900 0.51381 0.52158 

4.0 0.3 0.46866 0.46827 0.46359 0.47060 

4.5 0.3 0.43033 0.43005 0.42576 0.43219 

  SELF ELF PLF 

C=0.5 C=1.0 C2=0.5 C2=1.0 

3.0 0.00176 0.00352 2.56825 5.13650 0.00589 

3.5 0.00136 0.00272 2.63245 5.26491 0.00518 

4.0 0.00111 0.00222 2.68402 5.36803 0.00468 

4.5 0.00093 0.00187 2.72667 5.45335 0.00429 

  SELF ELF PLF 

C=0.5 C=1.0 C2=0.5 C2=1.0 

3.0 0.00174 0.00349 2.56827 5.13655 0.00589 

3.5 0.00135 0.00269 2.63248 5.26496 0.00518 

4.0 0.00109 0.00219 2.68404 5.36808 0.00467 

4.5 0.00092 0.00185 2.72670 5.45340 0.00429 

  a  b  
SELF ELF 

PLF 
C=0.5 C=1.0 C2=0.5 C2=1.0 

3.0 1.4 0.4 0.00176 0.00352 2.56942 5.13884 0.00588 

3.5 1.4 0.4 0.00136 0.00272 2.63348 5.26697 0.00517 

4.0 1.4 0.4 0.00111 0.00222 2.68494 5.36988 0.00467 

4.5 1.4 0.4 0.00093 0.00187 2.72752 5.45505 0.00428 
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Table 8.Bayes Risk of  under Chi-square Prior 

 

 

 

 

 

 

 

From tables 5 to 8 we conclude that squared error loss function provides the minimum posterior risk 

as compared to the other loss functions particularly as loss parameter C is (0.5) and among the priors Chi-

square prior provides the less posterior risk than other priors.  

 

Data set II: The second data - set represents the waiting times (in minutes) before service of 100 Bank 

customers and examined and analyzed by [7] for fitting [10] the Lindley distribution. The data are as follows: 

0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 4.2,  4.3, 4.3, 4.4, 4.4, 4.6, 

4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0, 

8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 

12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 

20.6, 21.3, 21.4, 21.9, 23.0, 27.0, 31.6, 33.1, 38.5. 

Table9.  Bayes Estimates of  under Uniform Prior 

 

 

 

 

 

 

Table 10. Bayes Estimates of  under Jeffrey Prior 

 

 

 

 

 

 

 

  
2a  SELF ELF PLF 

C=0.5 C=1.0 C2=0.5 C2=1.0 

3.0 0.3 0.00174 0.00347 2.56975 5.13949 0.00588 

3.5 0.3 0.00134 0.00268 2.63377 5.26755 0.00516 

4.0 0.3 0.00109 0.00219 2.68521 5.37042 0.00466 

4.5 0.3 0.00092 0.00185 2.72777 5.45554 0.00429 

  MLE SELF ELF PLF 

3.0 1.78893 1.80682 1.78893 1.81574 

3.5 1.47874 1.49353 1.47874 1.50090 

4.0 1.26545 1.27810 1.26545 1.28441 

4.5 1.11063 1.12173 1.11063 1.12727 

  MLE SELF ELF PLF 

3.0 1.78893 1.78893 1.77104 1.79785 

3.5 1.47874 1.47874 1.46395 1.48611 

4.0 1.26545 1.26545 1.25279 1.27176 

4.5 1.11063 1.11063 1.09952 1.11617 
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Table11.  Bayes Estimates of  under Gamma Prior 

 

 

 

 

 

  

Table12.  Bayes Estimates of  under Chi-square Prior 

 

 

 

 

 

 

 

 

 

                     Table13.  Bayes Risk of  under Uniform Prior 

 

 

 

 

 

 

 

 

 

 

 

 

                        Table14. Bayes Risk of  under Jeffrey Prior 

 

 

 

 

 

 

 
 

  a  b  MLE SELF ELF PLF 

3.0 1.4 0.4 1.78893 1.80109 1.78332 1.80995 

3.5 1.4 0.4 1.47874 1.49062 1.47592 1.49796 

4.0 1.4 0.4 1.26545 1.27670 1.26411 1.28298 

4.5 1.4 0.4 1.11063 1.12119 1.11014 1.12671 

  
2a  MLE SELF ELF PLF 

3.0 0.3 1.78893 1.77573 1.75800 1.78457 

3.5 0.3 1.47874 1.47009 1.45541 1.47741 

4.0 0.3 1.26545 1.25938 1.24680 1.26565 

4.5 0.3 1.11063 1.10615 1.09510 1.11166 

  
SELF ELF 

PLF 
C=0.5 C=1.0 C2=0.5 C2=1.0 

3.0 0.01616 0.03232 2.01427 4.02854 0.01784 

3.5 0.01104 0.02208 2.10948 4.21897 0.01475 

4.0 0.00808 0.01617 2.18736 4.37473 0.01262 

4.5 0.00623 0.01245 2.25261 4.50523 0.01107 

  SELF ELF PLF 

C=0.5 C=1.0 C2=0.5 C2=1.0 

3.0 0.01600 0.03200 2.01429 4.02859 0.01784 

3.5 0.01093 0.02186     2.10951      4.21902 0.01475 

4.0 0.00801 0.01601 2.18739 4.37478 0.01262 

4.5 0.00616 0.01233 2.25264 4.50528 0.01107 
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Table15. Bayes Risk of  under Gamma Prior 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table16. Bayes Risk of  under Chi-square Prior 

 

 

 

 

 

 

From tables 13 to 16 we conclude that squared error loss function provides the minimum posterior 

risk as compared to the other loss functions particularly as loss parameter C is (0.5) and among the priors Chi-

square prior provides the less posterior risk than other priors.  

 

12.  Conclusion 

On comparing the Bayes posterior risk of different loss functions, it is observed that SELF has less 

Bayes posterior risk than other loss functions in both non informative and informative priors. According to 

the decision rule of less Bayes posterior risk we conclude that SELF is more preferable loss function for 

different values of .  

It is clear from Tables 5 to 8 and Tables 13 to 16, the comparison of Bayes posterior risk under 

different loss functions using non-informative as well as informative priors has been made through which we 

conclude that within each loss function informative. Chi-square prior provides less Bayes posterior risk than 

other priors so it is more suitable for the exponentiated moment exponential distribution. 
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  a  b  
SELF ELF 

PLF 
C=0.5 C=1.0 C2=0.5 C2=1.0 

3.0 1.4 0.4 0.01599 0.03199 2.01782 4.03565 0.01771 

3.5 1.4 0.4 0.01095 0.02191 2.11242 4.22484 0.01466 

4.0 1.4 0.4 0.00803 0.01607 2.18988 4.37976 0.01255 

4.5 1.4 0.4 0.00619 0.01239 2.25482 4.50964 0.01103 

  
2a  

SELF ELF 
PLF 

C=0.5 C=1.0 C2=0.5 C2=1.0 

3.0 0.3 0.01574 0.03148 2.01874 4.03749 0.01768 

3.5 0.3 0.01078 0.02157 2.11319 4.22637 0.01464 

4.0 0.3 0.00791 0.01583 2.19054 4.38108 0.01254 

4.5 0.3 0.00611 0.01221 2.25540 4.51081 0.01101 
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