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Abstract: In this paper, a modified cytotoxic T-lymphocyte response model with two delays is 
considered. By regarding the delays as the bifurcation parameter, the local asymptotic stability of 
the positive equilibrium is studied. We found that the system undergoes a Hopf bifurcation of a 
nonconstant periodic solution at positive equilibrium when the delays across through a sequence of 
bifurcated periodic solutions. And, we investigate the direction and the stability of bifurcated 
periodic solution. 

1.    Introduction  

    Recently, population models of immune systems have been studied extensively. The cytotoxic T-
lymphocyte has plays an important role in medicine science, and it has been widely studied by 
many researchers (see, e.g. [1,2] and the references therein). In [3,4] the following differential 
equations system was considered 
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  (1.1) 

It is of necessary to incorporate time delays into the models for reflecting the dynamical 
behaviours. So in this paper, we investigate the CTL response system with two delays, as follows 
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                                                (1.2)                                                                                    

where , , , , , ,d a p c b   are positive constants, 
1 2 3 1 2, , , ,x x x   , are functions respect to t . It is well 

known that periodic solutions can arise through the Hopf bifurcation [5-7] in delay differential 
equations. Therefore, in this paper, we take bifurcation phenomenon and the properties of periodic 
solutions of system (1.2) into consideration.  

The organization of this paper is as follows. In section 2, we discuss the stability of the positive 
equilibrium and the existence of Hopf bifurcation. In section 3, the direction of Hopf furcation and 
the stability of bifurcated periodic solutions are determined.  

2.    Stability of positive equilibrium and Hopf bifurcation 

     It is easy to see that system (1.2) has three equilibrium. Following are the equilibrium states: 
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 For convenient, we take the following notes. 

*

* 2 * * * * 2 * * 2 * * 2
1 2 2 2 3 3 2 3 2 3 1 22

( ) : ( ), ( ) : ( ) 2 , ( ) : ( ) 2 ( ) ( ) .H c a cd b H d x cpx x H cpx x cp d x x x x x            

     If system (1.2) satisfies 
1( )H , it has a unique positive equilibrium and two boundary equilibria. 

Now, we do investigate the stability of the positive equilibrium. 
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Let 
1 1 2 2 2 3 3 1 2( ) ( ), ( ) ( ), ( ) ( ),u t x t u t x t u t x t          then system (1.2) becomes 
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  (2.1) 

The characteristic of (2.1) at *E is 

 3 2 * * * 2 * * * * *
2 2 3 1 2 2 2 3( ) ( ) 0.d x cpx x x x e cp d x x x              (2.2) 

Let * * * 2 * *
1 2 2 2 3 3 1 2, ,M d x M cpx x M x x      . Then, we arrive at 

 3 2
1 2 3 1 2 0M M M e M M        .  (2.3) 

    In the following, we regard the time delay as the parameter to consider the local stability of the 
positive equilibrium and the Hopf bifurcation of the system (2.1).  

Lemma 2.1 Assume that 1( )H  is hold. Then, the positive equilibrium * * * *
1 2 3( , , )E x x x  of system is 

locally asymptotically stable in the absence of delay. 
Proof    When 0  , (2.3) reduces to 

 3 2
1 2 3 1 2( ) 0M M M M M       .  (2.4) 

Clearly, by Routh-Hurwitz criterion, we know that all the roots of (2.4) have negative real parts. 
Then, the conclusion is obtained. 
     Lemma 2.2  Suppose that 1 2( ), ( )H H and 3( )H is satisfied. Then, at 
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  (2.5) 

(2.3) has a simple pair of conjugate purely imaginary roots 0i , where 0 .d   

Furthermore, we have the following results  
   ( )i    If 0[0, )  , then all the roots of (2.3) have negative real parts; 

   ( )ii  If 0  , 2( )H and 3( )H is satisfied then (2.3) has a simple pair of conjugate purely imaginary 

roots 0i ,  and all other roots have negative real parts.  

Proof    Now for 0  , let i   is a root of  (2.3), then 
3 2

1 2 3 2 2( ) ( ) ( ) 0ii M i M i M e M M        , 

separating the real and imaginary parts, we obtain 
 2

1 3 1 2sin( ) 0M M M M      ,  (2.6) 

 3
3 2cos( ) 0M M       .  (2.7) 

It is easy to see from (2.6) and (2.7) that 
 6 2 4 2 2 2 2 2 2

1 2 2 1 2 3 1 2( 2 ) ( 2 ) 0M M M M M M M M         .  (2.8) 

     Let 2 ,q   then (2.8) reduce to 

 3 2 2 2 2 2 2 2
1 2 2 1 2 3 1 2( 2 ) ( 2 ) 0q M M q M M M M q M M       .  (2.9) 

Now, by Descartes’ rule of sign, for an equation with real coefficients, non-existence of a positive 
root of (2.9) is that the coefficients are positive, namely, 2

1 22M M and 2 2 2
2 1 2 32M M M M  . So i  is 

not a root of (2.3). Then, the proof is complete. 
     Lemma 2.3   Assume that 1 2( ), ( )H H  and 3( )H  hold. 

    (1)  If 0[0, )  ,  then the positive equilibrium *E of system (1.2) is asymptotically stable; 

    (2)  If 0  ,  then the positive equilibrium *E of system (1.2) is unstable;  

    (3)  System (1.2) can undergo a Hopf bifurcation at the positive equilibrium *E when 

( 0,1,2...)j j   , where j  is defined by (2.5). 

     Proof   Through (2.6) and (2.7), we can get (2.5) obtained. So, 0j  , (2.5) gives 
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which is the smallest time delay for which the stable solution becomes unstable. Thus the 
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characteristic equation (2.3) has a pair of purely imaginary roots when 0   and 0  . 

Let ( ) ( ) ( )v i       be the root of (2.3) such that when j  satisfying ( ) 0jv   and 

0( )j   . Differentiating two sides of (2.3) with respect to , we have  
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   (2.10) 

In (2.9) denoting the left side by  , and differentiation it at 2
2 0q  .  Combing with (2.10),  we get 
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   (2.11) 

The sign of (2.11) is nonzero, so the characteristic (2.3) cannot have a multiple imaginary roots. 
Therefore, transversality condition holds. According to the bifurcation theorem for functional 
differential equation. One of the main results of this paper is as follows. 

Theorem2.1  Assume that 1 3 3( ), ( ), ( )H H H  hold. 

( )a   Then the positive equilibrium *E  of system (1.2) is asymptotically stable for all 0  ; 

( )b   If the above is hold, then the positive equilibrium *E  of system (1.2) is asymptotically 

stable for 0[0, )  ; 

( )c    If 1H and 4H  hold, then model system (2.1) is unstable for 0  . Hopf bifurcation occurs 

at 0  . 

3.   Stability of bifurcated periodic solutions 

     Now, we investigate the direction and stability of the periodic solutions bifurcated from the 

positive equilibrium *E . Without loss of generality, we denote critical values , ( 0,1,2...)j j    by 

 when the characteristic equation (2.3) has a pair of purely imaginary roots 0i , we denote  as 

, R      . Then 0  is the Hopf bifurcation value of system (2.1).  

Let * * *
1 1 1 2 2 2 3 3 3( ) ( ) , ( ) ( ) , ( ) ( )y t u t x y t u t x y t u t x      ,  then (2.1) reduces to  
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Let 
1 1 2 2( ) ( ), ( ) ( )W t y t W t y t    and 

3 3( ) ( )W t y t ,  then we have 
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  (3.2) 

Then, system (2.1) can be rewritten as the following functional differential in 3([1 , ), )C R   as 
 ( ) ( ( )) ( , ( ))W t L W t F W t    ,  (3.3) 

where 3
1 2 3( ) ( ( ), ( ), ( ))TW t W t W t W t R  , :L C R   and :F R C R   are defined respectively as 

follows. 
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where 3
1 2 3( ) ( ( ), ( ), ( )) ([ 1,0], )T C R          . By Riesz representation theorem, there exist a 
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matrix whose components are bounced variation function ( , )    for 3([ 1,0], )C R   , such that 
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1
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   for 3([ 1,0], )C R   .  (3.6) 

     For this representation, we can choose ( , )    as follows. 
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where   is the Dirac delta function i.e. 
0, 0,

( )
1, 0.


 




 

 
 

For 3([ 1,0], )C R   , we define 
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and 
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     From (3.8) and (3.9), the system (3.3) is equivalent to 
 ( ) ( )t t tW A W R W   ,   (3.10) 

where ( ) ( )tW W t   , for 1 0   . For 3([ 1,0],C R   , the adjoint operator *A of A  is defined 

by 
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associate with a bilinear form 
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where ( ) ( ,0)    . The normal form of eigenvector l  of A  belonging to the eigenvalue 0i   

and the eigenvector *l of *A belonging to the eigenvalue 0i   . The eigenvector are 

given 0(0) ( ) ( )A l i l     . Then, 
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     If 0* * *
1 2( ) ( , ,1) i sTl s D e     ,  be the eigenvector of *(0)A ,  similarly, 
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Since the property of adjoint, we have * *( ), ( ) 1, ( ), ( ) 0l s l and l s l     , we get  

0* * * *
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1

1 i
D
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      Let tN  be the solution of  (3.3), when 0  . Let’s  define 

 *( ) , ; ( , ) ( ) 2 [ ( ) ( )]t tz t l N G t N Re z t l      .  (3.15) 

On the center manifold 0C ,  we have 

 ( , ) ( ( ), ( ), )G t G z t z t  ,  (3.16) 

and 

 
2 2 3

20 11 02 30( , , ) ( ) ( ) ( ) ( ) ...
2 2 6

z z z
G z z G G zz G G         ,  (3.17) 
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where z  and z  are local coordinate for center manifold 0C , in the direction of *l and *l . Note that 

G  is real if tN  is real. We only study the real solutions. For solution 0tN C  of (3.10), since 0  , 

then 

 * * *
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  We rewrite the equation as 
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then, we get 
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Comparing the coefficients with (3.19), we have 
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In order to determinate 21g , we focus on the computation of 20 ( )G   and 11( )G  . From (3.10), 

(3.15) and (3.19), we can obtain 
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   Thus, we can calculate the following values 
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which determine the qualities of furcated periodic solutions in the center manifold at the critical 
value . According to the center manifold theorem, we have the following theorem which is the 
main result of this paper. 

Theorem 3.1  Assume that 1 2 3( ), ( ), ( )H H H  and 4( )H  hold. 

1( )Y 2  determine the direction of Hopf bifurcation. If 2 20( 0)   , then the Hopf bifurcation 

is supercritical (subcritical); 
 2( )Y 2  determine the stability of bifurcated solutions. If 2 20( 0)   , then the bifurcated 

solutions are stable (unstable); 
 3( )Y 2T  determine the periodic of bifurcated solutions. If 2 20( 0)T T  , then the periodic 

increases (decreases). 
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