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Abstract: In this paper, a modified cytotoxic T-lymphocyte response model with two delays is
considered. By regarding the delays as the bifurcation parameter, the local asymptotic stability of
the positive equilibrium is studied. We found that the system undergoes a Hopf bifurcation of a
nonconstant periodic solution at positive equilibrium when the delays across through a sequence of
bifurcated periodic solutions. And, we investigate the direction and the stability of bifurcated
periodic solution.

1. Introduction

Recently, population models of immune systems have been studied extensively. The cytotoxic T-
lymphocyte has plays an important role in medicine science, and it has been widely studied by
many researchers (see, e.g. [1,2] and the references therein). In [3,4] the following differential
equations system was considered

xl:=)/—dxl—ﬂx1xz, (1.1
x, = Bx,x, —ax, — px,x;,
Xy = cx,x; — bx;.

It is of necessary to incorporate time delays into the models for reflecting the dynamical

behaviours. So in this paper, we investigate the CTL response system with two delays, as follows
x| =y —dx, - fxx,(t—1),
xy = Bx,(t —7,)x, —ax, — px,x,,

Xy =cx,x, —bx,.

(1.2)

where y,p,d,a, p,c,b are positive constants, x,,x,,x,,7,,7,, are functions respect to ¢. It is well

known that periodic solutions can arise through the Hopf bifurcation [5-7] in delay differential
equations. Therefore, in this paper, we take bifurcation phenomenon and the properties of periodic
solutions of system (1.2) into consideration.

The organization of this paper is as follows. In section 2, we discuss the stability of the positive
equilibrium and the existence of Hopf bifurcation. In section 3, the direction of Hopf furcation and
the stability of bifurcated periodic solutions are determined.

2. Stability of positive equilibrium and Hopf bifurcation

It is easy to see that system (1.2) has three equilibrium. Following are the equilibrium states:
A:E (m,,0,0), m, =§; B:E,(myym,,0), m, =%m, = PP=0d),

B af
CEGL ), x = b o laB-alcdbp)]
cd +bp ¢ p(cd +bp)

For convenient, we take the following notes.
(H,)):cyB>alcd +bp),(H,):(d+ Bx,)* > 2cpx,x;,(H,) : (cpx,x;)’ > 2ep(d +px, Yox, + (87X X))
If system (1.2) satisfies (H,), it has a unique positive equilibrium and two boundary equilibria.
Now, we do investigate the stability of the positive equilibrium.
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Let u,(t) = x,(t — 7,),u,(t) = X, (¢),u;(¢) = x,(¢), 7 = 7, + 7, then system (1.2) becomes
uy (1) =y —du, (1) = u, (u, (t —7),
j(0) = By (D, (1) = an () = puey (O (1), @D
u(t) = cu, ()u; (1) = bus (7).

The characteristic of (2.1) at E"is

A2+ 22 (d + Bx,) + Acpx,x, + AB7x x,e” T +cep(d + Bx, )x,x; = 0. 2.2)
Let M, =d + Bx,,M, =cpx,x,,M, = B’x/x, . Then, we arrive at
A+ MA+M,A+Me A+ MM, =0. (23)

In the following, we regard the time delay as the parameter to consider the local stability of the
positive equilibrium and the Hopf bifurcation of the system (2.1).
Lemma 2.1 Assume that (H,) is hold. Then, the positive equilibrium E*(x,x;,x;) of system is
locally asymptotically stable in the absence of delay.
Proof When 7 =0, (2.3) reduces to
P AMAV+ (M, +M)A+M M, =0. (2.4
Clearly, by Routh-Hurwitz criterion, we know that all the roots of (2.4) have negative real parts.
Then, the conclusion is obtained.
Lemma 2.2 Suppose that(/,),(H,)and (H,)is satisfied. Then, at
2 .
z; =Larccos[w]+ﬂ,j=0,l,2... (2.5)
B w, =M, @,
(2.3) has a simple pair of conjugate purely imaginary roots *ie,, where o, =d.
Furthermore, we have the following results
(i) If r€[0,7,), then all the roots of (2.3) have negative real patrts;
(i) If ¢ =17,,(H,)and (H,)is satisfied then (2.3) has a simple pair of conjugate purely imaginary
roots tie,, and all other roots have negative real parts.

Proof Now for >0, let A =iw is aroot of (2.3), then
(iw)’ + M, (iw)’ + M, (io)+ M,e™ + M,M, =0,
separating the real and imaginary parts, we obtain

—Mla)2 +M,osin(wt)+ MM, =0, (2.6)
-’ + M,wcos(wr)+ M, =0. 2.7
It is easy to see from (2.6) and (2.7) that
@ +(M]! -2M,)o" +(M; -2M}M,-M;})o* + MM =0. (2.8)
Let @® = g, then (2.8) reduce to
@M =2M)g* +(M; -2M]M, - M})g+M}M; =0. (2.9)

Now, by Descartes’ rule of sign, for an equation with real coefficients, non-existence of a positive
root of (2.9) is that the coefficients are positive, namely, rs> > 2a,and M2 >2MM, +M?. So i is

not a root of (2.3). Then, the proof is complete.
Lemma 2.3 Assume that (/,),(/Z,) and (/) hold.

(1) Ifr €[0,7,), then the positive equilibrium E” of system (1.2) is asymptotically stable;
(2) Ifr > 7,, then the positive equilibrium E”of system (1.2) is unstable;

(3) System (1.2) can undergo a Hopf bifurcation at the positive equilibrium E° when
r=17,(j=0,1,2..), wherez, is defined by (2.5).
Proof Through (2.6) and (2.7), we can get (2.5) obtained. So, j =0, (2.5) gives
T, = Larccos[w],
@, w, —M,w,
which is the smallest time delay for which the stable solution becomes unstable. Thus the
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characteristic equation (2.3) has a pair of purely imaginary roots when o =, and 7 =7, .
Let A(7)=v(r)+iew(r) be the root of (2.3) such that when 7 =7, satisfying v(z;)=0 and
o(7;) = o, . Differentiating two sides of (2.3) with respect to z , we have

R (d_/l ) 3, +2(MIM )y + M7 —2M M, - M; 2.10)
e = ) .
dr M; w;

A=ie,
In (2.9) denoting the left side by Q, and differentiation it at ¢, = @, . Combing with (2.10), we get
dAN. 1 dQ
[RB(E) | Wl dg 210

The sign of (2.11) is nonzero, so the characteristic (2.3) cannot have a multiple imaginary roots.
Therefore, transversality condition holds. According to the bifurcation theorem for functional
differential equation. One of the main results of this paper is as follows.

Theorem2.1 Assume that (H,),(H,),(H,) hold.

(a) Then the positive equilibrium E of system (1.2) is asymptotically stable for all z>0;

g=a;

(b) If the above is hold, then the positive equilibrium E" of system (1.2) is asymptotically
stable forz €[0,7,) ;
(c) If H and H, hold, then model system (2.1) is unstable forz > 7,. Hopf bifurcation occurs

at r=1,.

3. Stability of bifurcated periodic solutions
Now, we investigate the direction and stability of the periodic solutions bifurcated from the
positive equilibrium E*. Without loss of generality, we denote critical values 7 = 7,,(j=0,1,2...) by
7 when the characteristic equation (2.3) has a pair of purely imaginary roots *i@,, we denote 7 as
t=7T+u, e R. Then u=0is the Hopf bifurcation value of system (2.1).
Let y,()=u, ()= x,, y,(t) =u,(t) = x,, y,(t) = u,(t) - x, , then (2.1) reduces to
Yi(6)=u/(t) = =dy,(t) = By, () y,(t =7) = By ()x,p,(t = 7),
V(@) =5 (1) = (n, () +x,)(By, (1) = pys (1)), G-
V() =15(0) = ey, (D (x; + 5 (1)),
Let W,(¢) = y,(zt),W,(¢t) = y,(zt) and W,(¢) = y,(zt), then we have
W)= yi(6)r = ol ~(d + B, W, (2t) — B, (t~)x; — BW, ()W, (1 ~ )],
W) = ¥y ()7 = T(W, (1) + ;) (B, (1) = pIW; (1)), (3.2)
W(t) = ¥i(0)7 = e W, ()W (8) + x3).
Then, system (2.1) can be rewritten as the following functional differential in C([1- ), R’) as
W't)=L,(W(0)+F(u,W(), (3.3)
where W (t) = (W,(0),W,(0),W,(t))" €eR* , L,:C—R and F:RxC— R are defined respectively as
follows.

—d-px, 0 0 (40 0 —Bx; 0)(4(-)
Lp=G+w)| Bx, 0 —px, |40 |+G+w|[0 0 0| g-D| (3.4
0 cx; 0 #.(0) 0 0 0\ g,(=D
and
_ﬁ¢1(0)¢2(_1)
F(u,W () =T+ )| B0)¢,(0) - pg,(0)¢(0) |» 3-3)
c$,(0)4,(0))

where ¢(0) = (4,(0),4,(0),4,(0))" € C([-1,0],R’) . By Riesz representation theorem, there exist a
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matrix whose components are bounced variation function 7(8, ) for 6 e C([-1,0],R?), such that

L$=| #O)An(. ). for 6 C(-1,0,R). (3.6)
For this representation, we can choose 77(é, 1) as follows.
—d-px. 0 0 0 -Bx. 0
nO.u)=GF+p| Bx, 0 —px [S@O+E+p|0 0 0]5@+1): (3.7)
0 cx; 0 0 0 0
where § is the Dirac delta function i.e. §(9) :{ Oi a; O(;
For¢ e C([-1,0],R?), we define
%, -1<6<0,
A(p)g = de (3.8)
0
[ #©3dn@.m.  0=0.
and
0 -1£6<0
R - ’ ’ (3.9)
e {F(e, W, 6=0.
From (3.8) and (3.9), the system (3.3) is equivalent to
W= AW, + R()W, (3.10)
where W () =W (t+0), for -1<0<0. For w € C([-1,0], R’, the adjoint operator 4" of 4 is defined
by
—M, 0<s<l,
A= ds (3.11)

jfly/(—s)dn(s,O), s=0.
associate with a bilinear form
<Y ©).0) >= OO [ [ @) (€-0)dn@)p(&)de (3.12)
where 7(6) =7r(6,0). The normal form of eigenvector / of 4 belonging to the eigenvalue iw,7

and the eigenvector [° of A* belonging to the eigenvalue —iw,7 . The eigenvector are
given A(0)/(0) = iw,71(0) . Then,

2 * ¥ .
_ —W) +Cpx, X, . =@

10)=(a,,,)) €7, o = gy =— (3.13)
cfx,x, cx,
If I(s)" = D(a; ,a;,1)" €™, be the eigenvector of 4*(0), similarly,
_ 2 * * ) B . .
A O)(s) =i ' (s), of =—RTPNN jor e _ 1O (3.14)
PP x, 2
Since the property of adjoint, we have <[ (s),/(8) >=1,and < 1" (s),1(6) >=0, we get
D= = —*1 = * ot
l+a,a, +a,a, + fia,a, x,e "
Let N, be the solution of (3.3), when ¢ =0. Let’s define
2(t)=<I',N,>  G(t,0)=N.(0)-2Re[(1)I(0)]. (3.15)
On the center manifold C;, we have
G(1,0) = G(z(1),2(1), 0). (3.16)
and
22 Z_2 Z3
G(2.2.0) =Gy (0) 5+ G (D) + Gin(O) -+ Gog(O) "+ (3.17)

215



‘ ATL':EETSE Advances in Social Science, Education and Humanities Research (ASSEHR), volume 230

where z and Z are local coordinate for center manifold C,, in the direction of /" and I . Note that
G isreal if NV, is real. We only study the real solutions. For solution N, € C; of (3.10), since x=0,

then
2(t)=<I",N! >= iw,Fz +1 F(0,G(z,Z,0)) + 2Re[z(1)[(0)] 2 iw, 7z +1 F, (2, ). (3.18)
We rewrite the equation as
Z'(t) =iw,7z(t)+ g(z,Z), (3.19)
where
2 2 2—

. = _ z _ z z°z
g(z,2)=1 E)(Z,Z)=g20?+gnzz +g02?+g21—+....

2
It follows from (3.15) and (3.17) that
N(t) =(N,,, Ny, Ny,)

2 = . (3.20)
=G, (9)? +G,(0)zZ+G,, (9)7 +(ay, 0, 1) 2+ (G, d,,1)e ™z +

ooy

and

2
z

N, (0)= G;;>(0)7+ G (0)z + G (0)% ozt AT+

2

2 —
N, (0)= G§§>(0) +G2(0)2Z + G(z)(O)%+ Az oz ...
=
N, (0)=GY (0) +GO(0)2Z + G<3>(0)%+ 4T+ (3.21)
_2 _ ~
N, (-)=G (- 1)%+ GO (-1)zz + GV (- 1)%+ a,ze " + a7 + ...

2

Z z
+ G (-1)ZZ + G (-1) =+, ze ™ +a, 7 + ...
11 2 2

N, (=D =Gy (=)= 5

2

N, (-)=GY) (—1) +G(~1)2Z + G (- 1)%+ 7€ 47N

then, we get

2 2 _
2(2,7) = 513[—%* BGY (0)% +GP(0)2 + GV (0) % taztaz+..)

2 -_— . ~
(G2 (- 1) +GP(-D)Z+ G2 (- 1))Z—+ o,ze + 7™ )

2

+a;‘[ﬂ(G(”(0)—+Gf; (0)zz + GV (0) = +alz+212+...)

2 2 _
(G§§>(0)%+ G?(0)zz + G (0)%+ Qz+a,z+.) (3.22)
=
- p(G§§>(0) +GP(0)Z + G(2)(O)—+ Gzt oz +...)
2 _
G (0)%+ G (0)Z + Gg§>(0)%+z +7+.)]

2 2 .
+c(G§§)(0)%+ G2 (0)zz + G(§§>(0)%+azz+azz+...)

@O+ OZ+GR O +z+7 +..)].
Comparing the coefficients with (3.19), we have

216



‘ ATL':FETSE Advances in Social Science, Education and Humanities Research (ASSEHR), volume 230

820 = 255(_1805:“2 aje"™ + faya,a, — pa,a, +ca,)
gy = 2ED[(- ey N, 0,e™ + a6 ) + (ﬂ(al a, + fa,a;)
= p(Bla, +a,)) + 2e(fla, + )]

8w = 255[_:30‘1“2 al*emof +a;(ﬂal o, —pa,)+ca,] (3.23)

~7 — 1 iyt —ioyT 1—
& = 2TD((_ﬂal (E Gz((l))(o)aze v+ G1(11) (O)aze "+ alGl(f)(_l) + Eale(g)(_l))
— 1 — 1 —
+ar [ﬂ(E)G&? (0)a, + G (0)a, + G (0)e, + 5)G§é> 0)e)
1 1 —
- p(E)Gé? 0)+GP(0)+ G (0)er, + 5)6‘53) (0)ar,)]
1 1 —
+ c(E)Ggf)’ 0)+ GI(I”(O) + fo)(O)oc2 +5)G2(3) (O)az)).

In order to determinate g,,, we focus on the computation of G,,(6) and G,,(8). From (3.10),
(3.15) and (3.19), we can obtain
A(0)G(t,0)-2Re[l"(0)F ()], -1<6<0,

G'=N, —-z1-7Z1 = _
A(0)G(t,0) = 2Re[l (O)F,[(O)]+F,,  6=0.
Let
G' = A(0)G(1,0)+ 0(z,Z,0) . (3.24)
where
2 2
0(z7.0)= 0(O) T+ 0, (D +0 S +... (3.25)
Differentiating two sides of (3.17) with respect to ¢z, we have
G'=GZ+GZ. (3.26)
According to (3.25) and (3.26), we obtain
(4(0) - 2iwy7]) = =0y, (0), A0)N(0)=-0,,(0) (3.27)

From (3.24), when —-1<6 <0, we get
0(z,2,0) =1 (0)F,[(0) - F[(0) 1(8) = -g(z,2)I(0) - g(z,2)I(D).
Thus,
0,0(0) =—g,l(0)— 2, 1(0), O,,(0)=-g,[(0)—g,,1(0)-
We can obtain that
Gy = 2i0,T G,y + 2,)/(0) + 5, 1(0),
then
G20 (9) — ngOZEO) eiwofﬂ + igoz Z(f)) e—iwofﬂ + EleZiniH'
w,T 3,7
Similarly,
G, (0)= _lg”l(~0) £ | 180 l(~0) o i +EzeZi’“°T_g,
w,T 3w,T

Next, we focus on the computation of E,and E, . From (3.27), we achieve

Lol d17(0)G, (0) = 2i0,7 G, (0) = 05 (6) » IOI dn(0)G,,(0)=-0,,(0) -
where 7(8) =7(0,6). By (3.22), we have
~Ba,a,e” "
010(0) = £:4/(0) ~£,,1(0) + 27| faar, ~ pa, |
ca,

and
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—Bla,0,€™ + e a,e” ™)
0,,(0)=~g,(0) ~ g, [(0) +27| fleyt, +a,0,) ~ plet, ) |
C(aza_z)
Then
liw, 71 —int’, e dn(@)]1(0) = 0,[-ie, T 1 — int°,de” " n(O)]I(0) = 0.
We get
—pao,a,e”™
(2ie, 71 - int® & dn(6) )(6) = 2¢| paya, — par, |
ca,
It follows that
—Baa,e™  Pxe ™0 2iw, +d + fx, —Paae™ 0
EY =% Baya, — pa, 21'0)2 o ,EP == —pa; Baa, —pa, px, |,
ca, —Cx;y 2iw, 0 ca, 2iew,
5 2iw, +d J:,Bx; Bx/e? ™ —Baa,e” 2iw, +d :rﬂx; Bx/e " 0*
EY = 3 -, Zia)(i Ba,a, — pa,|, B = -px, 2ia)2 DX,
0 —cx, ca, 0 —cx, 2iw,
Similarly,

~Blaa,e™ +a,ae™)  px 0

2| T — *
E;”:Eﬂ(ala2+a2al)—p(a2+a2) 0 px,

ca, +a, —cx; 0
, d+px,  —Plaa,e™ +a,ae™) 0
EEZ):F _:Bx; By, +a,a)— pla, +a,) Plaa, +a,a) - pla, +a,)|,
0 ca, +a, 0
J[d+Px B ~Bla,c,e™ +a,a,e™)  |d+px, Bx 0
EY = = -px, 0 Baa, - pa, ,B'=| —px, 0 px|
0 —cx, ca, + 072 0 —ex, 0

Thus, we can calculate the following values

. 2
i
Ci(0)=—=(gx&,—2lg, |2 _|g02_| )+_g21 >
T 3

2w, 2
= ReC1 ((3) . B, =ReC,(0), T, =~ ImC,(0)+ ,szlml (7) ’
ReA'(7) w,T

which determine the qualities of furcated periodic solutions in the center manifold at the critical

value 7 . According to the center manifold theorem, we have the following theorem which is the
main result of this paper.

Theorem 3.1 Assume that (H,),(H,),(H,) and (H,) hold.

(Y,) p, determine the direction of Hopf bifurcation. If s, > 0(x, <0), then the Hopf bifurcation
is supercritical (subcritical);

(Y,) B, determine the stability of bifurcated solutions. If £, >0(f, <0), then the bifurcated
solutions are stable (unstable);

(Y;) T, determine the periodic of bifurcated solutions. If 7, >0(7, <0), then the periodic

increases (decreases).
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