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Abstract 

Brain tissue segmentation is one of the most important parts of clinical diagnostic tools. Fuzzy C-mean (FCM) is 

one of the most popular clustering based segmentation methods. However FCM does not robust against noise and 

artifacts such as partial volume effect (PVE) and inhomogeneity. In this paper, a new approach for robust brain 

tissue segmentation is described. The proposed method quantifies the volumes of white matter (WM), gray matter 

(GM) and cerebrospinal fluid(CSF) tissues using hybrid clustering process which based on: (1) FCM algorithm to 

get the initial center partition. (2) Genetic algorithms (GA) to achieve optimization and to determine the appropriate 

cluster centers and the fuzzy corresponding partition matrix. (3) Possibilistic C-Means (PCM) algorithm for 

volumetric measurements of WM, GM, and CSF brain tissues. (4) Rule of the possibility maximum to compute the 

labeled image in decision step. The experiments were realized using different real and synthetic brain images from 

patients with Alzheimer’s disease. We used Tanimoto coefficient, sensitivity and specificity validity indexes to 

validate the proposed hybrid approach and we compared the performance with several competing methods namely 

FCM and PCM algorithms. Good result was achieved which demonstrates the efficiency of proposed clustering 

approach and that it can outperforms competing methods especially in the presence of PVE and when the noise and 

spatial intensity inhomogeneity are high. 

 

Keywords:  Fuzzy c-means algorithm; Possibilistic c-means algorithm; Genetic algorithms; Hybrid reasoning; Brain 

tissue clustering; Alzheimer’s disease. 

 

1. Introduction 

The classification of brain tissues including the 

quantification of tissue volumes are a necessary step in 

many medical imaging applications. The resulting 

segmentation yields a patient-specific demarcation of 

individual tissues. This permits the quantitative 

characterization of the tissues and  the construction of 

patient specific models of tissue conductivity [1].  

 Moreover, regional volume calculations may bring 

even more useful  diagnostic information. Among them, 

the quantization of grey matter (GM), white matter (WM)  

and cerebrospinal fluid (CSF) tissues volumes would be 

most useful for diagnosis and treatment of pathologies, 

and may be of major interest in neurodegenerative 

disorders such as Alzheimer disease (AD), Parkinson 

related syndrome, in WM metabolic or inflammatory 

disease, in congenital brain malformations or perinatal 

brain damage, or in post-traumatic syndrome [2]. 

However, the tissue volumes quantification  is one of 

the most challenging tasks in image processing for many 

reasons, some of which are [3,4,5,6]: (1) medical images  

contain inherent constraints that make the resulting image 

noisy and may include or introduce some visual artefacts 
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such as partial volume effects (PVE) and spatial 

inhomogeneity. (2) Image data can be ambiguous and 

susceptible to noise and high frequency distortion, where 

object edges become fuzzy and ill-defined. 

Indeed, the brain image segmentation is a complex and 

challenging task due to errors in the scanner resulting from 

inhomogeneities in the magnetic field and biological 

variations between subjects. Other generating factors are 

to be  expected such  as the  inherently  imprecise  nature 

of the images in calculations, the vagueness in class 

definitions and expert knowledge [7], and the uncertainty 

of some of sources which contain additive and non-

additive noise. Therefore, every voxel is influenced by the 

PVE and belonging to different brain tissues. 

Unfortunately, this limits the overall diagnostic potential 

in the clinical context. 

To fix this problem, several authors [8,9,10,11,12] 

have reviewed some image segmentation techniques using 

pattern recognition, making a distinction between on the 

one hand, supervised methods [13,14,15,16] with 

modeling of the image by Markov or Gibbs random field, 

Bayes' classifier with estimation by maximum likelihood 

expectation, k nearest neighbors. On the other hand, 

unsupervised algorithms [17,18,19,] with hard [14,20] and 

fuzzy [21,22,23,24]  clustering techniques.  

Fuzzy based image clustering techniques are widely 

used due to effective segmentation performance. 

Clustering is a process that allows dividing data into 

groups of similar pattern called clusters  [25]. In the 

literature, there are several fuzzy clustering techniques. 

Nothing that the first notion of fuzzy theory was proposed 

by Zadeh [26] who established the basic principle of fuzzy 

theory using the fuzzy logic, in order to describe the 

uncertainty of  belonging by a membership function. Then 

Ruspini [27] proposed the first notion of a fuzzy partition 

who considers that each cluster is a fuzzy set. After, Zadeh 

[28] proposed the conceptual framework for cluster 

analysis and pattern classification using the fuzzy set 

theory. Later, several researches were published in order 

to improve the Bezdek algorithm [29] and to make fuzzy 

c-means (FCM) algorithm robust against noise and 

artifacts such as PVE and inhomogeneity. 

Traditionally, probability theory was the primary 

mathematical model used to deal with uncertainty 

problems [9] however, the possibility concept introduced 

by the fuzzy set theory has gained popularity in modeling 

and propagating uncertainty in imaging applications [30]. 

The membership values generated by FCM using the FCM 

constraint (eq. 3) represent the degree of sharing, but not 

the degree of typicality or compatibility with an elastic 

constraint. Typicality here means the actual degree of 

belongingness of a datum to a cluster rather than an 

arbitrary division of data [31, 32, 33]. Krishnapuram et al. 

[32] addressed these issues by proposing the possibilistic 

c-means (PCM) algorithm whose membership values 

represent the degree of typicality rather than the 

degree of sharing and as consequence constraint (eq. 3) is 

eliminated [32, 34]. Every cluster is independent of the 

other clusters in PCM algorithm. 

The aim of this paper is to evaluate the effectiveness 

of possibilistic theory which managing uncertainty and 

imprecision. We choose then the PCM algorithm for 

volumetric measurements of WM, GM and CSF brain 

tissues. We used then PCM algorithm to create fuzzy 

tissue maps of brain images instead FCM and its 

variations because, this possibilistic algorithm allows to 

interpret memberships as absolute degrees of belonging 

whereas, they are similar to degrees of sharing in the case 

of FCM or extensions.  Moreover, the PCM algorithm is 

more robust in the noisy environment then FCM 

algorithm. 

Moreover, we propose a genetic – fuzzy process for 

centers initialization of  PCM clusters. For this purpose, 

we use the FCM algorithm [11, 35] to get the initial 

partition and genetic algorithms (GA) [36] to achieve 

optimization and choose at the end of accounts the best 

score among all. The integration of genetic process is to 

determine the appropriate cluster centers and the fuzzy 

corresponding partition matrix. This initialization process 

allows us to train the possibilistic algorithm with centers 

partition obtained with empiricism and not by the random 

which avoids local minima and it allows the process to 

converge quickly.  

Clustering results are reported for several simulated 

T1- weighted, Magnetic Resonance (MR), Single Photon 

Emission Computed Tomography (SPECT) and Positron 

Emission Tomography (PET) brain images belonging to 

patients suffering from AD. These images obtained from 

synthetic ADNI (Alzheimer's Disease Neuroimaging 

Initiative ) phantom [37] and from Gabriel Mont pied 

hospital real database  [38].  Superiority of the proposed 

method over both conventional FCM and PCM algorithms 

are demonstrated.  

The paper is organized as follows: Section 2 deals with 

literature survey in medical imaging field. Section 3 

explains the principle of the hybrid clustering process used 

64

 
___________________________________________________________________________________________________________

 International Journal of Networked and Distributed Computing, Vol. 6, No. 2 (April 2018) 63-77 



 

 

 
 

for quantization of different tissue classes. Sections 4 and 

5 present the implementation and results for clinical case 

of AD. Finally, section 6 concludes and discusses this 

work. 

2. Related-work 

There are huge amount of works related to enhancing the 

conventional FCM for image segmentation which are 

found in the literature and that are proposed for increasing 

the robustness of FCM against PVE and noise.  

In [39], the FCM distance-based algorithm has been 

generalized into the Evidential C-Means algorithm (ECM) 

[40], which allows representing ambiguous information in 

the feature space on disjunctions in an unsupervised way. 

The authors in [41] have presented an approach for 

improving range image segmentation based on fuzzy 

regularization of the detected edges. The segmentation 

process was repeated for all region boundaries in the 

image using an improved version of the FCM algorithm. 

To deal with intensity in homogenities, the authors in 

[11] proposed an adaptive FCM. In this case, the centroids 

are multiplied by unknown multiplier filed, which 

represents the inhomogeneity. First and second order 

regularization terms are included in the cost function to 

make the multiplier field varying slowly and smoothly. 

Pham and Prince [42,43] proposed an Adaptive FCM 

algorithm (AFCM) that produces a soft segmentation 

while simultaneously adapting to intensity 

inhomogeneities in the image. The algorithm was derived 

by incorporating a gain field term into the objective 

function of the standard FCM algorithm. While AFCM 

has been shown to be effective in correcting for 

inhomogeneities, its main disadvantage is that its 

performance degrades significantly with increased noise.  

In Karan Sikka et al. [44], a fully automated brain MR 

image segmentation algorithm under modified FCM 

framework is proposed. An entropy driven homomorphic 

filter is used for in-homogeneity correction. A method 

namely histogram-based local peak merger using adaptive 

window is proposed to initialize cluster centers. The 

results of the algorithms are compared quantitatively to 

investigate their effectiveness in classification of GM, 

WM and CSF tissues. 

A two-dimensional FCM (2DFCM) algorithm was 

proposed in [45] for the molecular image segmentation. 

The three steps of the algorithm are: noise suppression, 

texture energy characterization, and introducing spatial 

constraints into the fuzzy clustering.  The segmentation 

results are satisfactory for the images corrupted by noise 

and intensity variations. 

In [29,35], the authors used multidimensional features 

formed by GLCM (Grey Level Co-occurrence Matrix) 

feature generation model to include spatial information 

into FCM. Extra dimensions make the process time 

consuming so to overcome this, distance metric based 

compression is proposed to select the representative pixels 

of the groups and perform clustering on them, which 

resulted in fast and effective clustering.  

A high speed parallel FCM algorithm for brain tumor 

image segmentation is presented in [46]. Their algorithm 

has the advantages of both the sequential FCM and 

parallel FCM for the clustering process in the 

segmentation techniques and the algorithm was very fast 

when the image size was large.  

The work presented in [47] deals with brain MRI 

segmentation. The distinct regions are represented by 

wavelet coefficients. Classification of these features was 

performed using FCM algorithm. Edge detection 

technique was used to detect the edges of the given 

images. Silhouette method was used to find the strength of 

clusters. 

In [48], Gaussian smoothing was performed on input 

image proposing a method to find the weightage for each 

feature using bootstrapping technique when dealing with 

multiple features.  

Improved FCM (IFCM) to deal with noise affect is 

proposed in [49]. In IFCM the distance term of  FCM is 

modified by including two terms, feature attraction and 

distance attraction.  

A prior probability and fuzzy spatial information are 

used in ISFCM (Improved Spatial FCM) algorithm, 

proposed in [50] to minimize the noise affect in MRI 

images. In the study, cluster centers are initialized using 

histogram based FCM.  

In [51], a novel fuzzy energy minimization method 

was presented for simultaneous segmentation and bias 

field estimation of medical images. 

In [52], the effectiveness of the FCM algorithm in 

terms of computational rate is improved by modifying the 

cluster center and membership value updating criterion.  

In [53], the comparison of the three fundamental 

image segmentation methods based on FCM, Intuitionistic 

FCM (IFCM), and Type-II FCM (T2FCM) is presented. 

These algorithms are executed in two scenarios– both in 
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the absence and in the presence of noise and on two kinds 

of images– Bacteria and CT scan brain image.  

In [54], a Picture Fuzzy Clustering (PFC) method was 

presented for MRI brain image segmentation. The PFC is 

based on the picture fuzzy set, which is the generalization 

of the traditional fuzzy set and intuitionistic fuzzy set.  

In [55], the application of modified FCM algorithm for 

MR brain tumor detection is explored. A comprehensive 

feature vector space is used for the segmentation 

technique.  

Although FCM and its variants are a very useful 

clustering methods, its memberships do not always 

correspond well to the degrees of belonging of the data, 

and they may be inaccurate in a noisy environment [32]. 

In another sense, the FCM algorithm and its extensions 

create relative memberships interpreted as degrees of 

sharing of the voxels between all the classes, that are thus 

unrepresentative of the true degree of belonging. 

3. Principle of  possibilistic clustering based on 

fuzzy-genetic initialization  

Fig. 1. schematizes the proposed classification process. 

This process is composed of three-step of segmentation: 

 Cluster centers initialization with FCM/GA process 

and which is necessary for subsequently applying the 

PCM algorithm. 

 Image modeling, for which the fuzzy tissue maps are 

created using PCM algorithm and the information 

extracted from the images is modeled in a common 

theoretical frame. 

 Image labeling, which synthesizes the available 

information by creating a labeled image. 

3.1. Cluster center initialization 

We applied FCM to determine the appropriate cluster 

centers bi and the corresponding fuzzy partition matrix U 

of PCM algorithm.  

The FCM clustering uses iterative optimization to 

approximate minima of a constrained objective function 

[9]: 

𝐽𝐹𝐶𝑀(𝐵, 𝑈, 𝑋) =∑∑𝑢𝑖𝑗
𝑚𝑑(𝑥𝑗 , 𝑏𝑖)

𝑁

𝑗=1

𝐶

𝑖=1

 
                          

(1) 

 

Where 𝑁 is the number of voxels that need to be 

partitioned into C tissues, 𝑢𝑖𝑗  is the membership function 

of the element 𝑥𝑗  (a feature vector at position 𝑗) belonging 

to the 𝑖th cluster, 𝑚 is the weighting exponent that controls 

the fuzziness of the resulting partition (most often is set to 

𝑚 = 2) and 𝑑(𝑥𝑗 , 𝑏𝑖) is the similarity measure between 𝑥𝑗  

and the 𝑖th cluster center 𝑏𝑖. The most commonly used 

similarity measure is the squared Euclidean distance: 
   

𝑑(𝑥𝑗 , 𝑏𝑖) = ‖𝑥𝑗 − 𝑏𝑖‖
2
 (2) 

The objective function 𝐽𝐹𝐶𝑀  (equation (1)) is 

minimized under the following constraints: 

 

{
 
 
 

  
 

𝑢𝑖𝑗 ∈ [0,1]

∑𝑢𝑖𝑗 = 1 ∀𝑗

𝐶

𝑖=1

0 <∑𝑢𝑖𝑗 < 𝑁  ∀𝑗

𝑁

𝑗=1

 

 

(3) 

 

 
 
Fig. 1. Proposed general scheme for tissue quantification. 
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Considering these constraints, the membership degrees 

𝑢𝑖𝑗  and clusters centers 𝑏𝑖  are given as follows:  

𝑢𝑖𝑗 = [∑(
𝑑(𝑥𝑗 , 𝑏𝑖)

𝑑(𝑥𝑘 , 𝑏𝑖)
)

1 𝑚−1⁄𝐶

𝑘=1

]

−1

 

 

 
(4) 

 

𝑏𝑖 =
∑ 𝑢𝑖𝑗

𝑚𝑥𝑗
𝑁
𝑗=1

∑ 𝑢𝑖𝑗
𝑚𝑁

𝑗=1

 
(5) 

 

The FCM algorithm iteratively optimizes 𝐽𝐹𝐶𝑀, by 

evaluating (4) and (5), until the following stop criterion is 

satisfied:  

max
𝑖∈[1,𝐶]

‖𝑏𝑖
𝑙 − 𝑏𝑖

𝑙+1‖
∞
< 𝜀 

(6) 

 

Where 𝑙 is the iteration index and ‖⋅‖∞ is the 𝐿∞ norm. 

Once a membership value 𝑢𝑖𝑗  for each class 𝑖 is assigned 

to each voxel 𝑗. 

The FCM algorithm is composed of the following 

steps:  
FCM steps 

Let 𝑋 = {𝑥𝑗 𝑗 = {1…𝑁}⁄ } the voxels set, 𝑈 = (𝑢𝑖𝑗)1≤𝑖≤𝐶,1≤𝑗≤𝑁
 

the matrix of membership degrees, 𝐵 = (𝑏𝑖𝑗)1≤𝑖≤𝐶,1≤𝑗≤𝑁  the 

matrix of cluster centers, m the degree of fuzzy and   the 

threshold representing convergence error. 

1. Initialize the degrees of belonging matrix U(0) by  random 
values in the interval [0, 1] satisfying the condition (3). 

2. At k-step: 
- Compute the belonging degrees matrix U(k) using Eq. (4). 
- Compute the centers vectors B(k)=[bj] using Eq. (5). 

3. Update:  B(k+1), U(k+1) 

4. If ‖𝐽(𝑘+1) − 𝐽(𝑘)‖ < 𝜀 then STOP otherwise return to step 

2.  

We applied FCM algorithm to determine the 

appropriate centroids bi of clusters before optimization 

with GA.  

3.2. Optimization of FCM results with GA 

The result of FCM clustering was used as initial 

population for GA. This allows training the GA with a 

population of empirically generated chromosomes and not 

randomly initialized.  

The GA started with a population composed of the set 

of FCM results which represent the fuzzy corresponding 

partition matrix. Solutions from one population are taken 

and used to form a new population. This is motivated by a 

hope, that the new population will be better than the old 

one. Solutions which are selected to form new solutions 

(offspring) are selected according to their fitness - the 

more suitable they are the more chances they have to 

reproduce. 

The following merit function was used to assess the 

fitness of a chromosome [36]: 

),(
1

2

ij

C

i Cx

j bxdpw
ij

 
 

  
 

(7) 

Where pj is the weight of the jth voxel xj and bi the center 

of gravity of cluster Ci, i referring to one of the C tissue 

clusters. We have [36]: 

 


ij Cx j

i

i x
C

b
1

 
 

(8) 

The crossover and mutation are the most important 

part of the GA. The performance is influenced mainly by 

these two operators. Crossover selects genes from parent 

chromosomes and creates a new offspring. After a 

crossover is performed, mutation take place. This is to 

prevent falling all solutions in population into a local 

optimum of solved problem. Mutation changes randomly 

the new offspring. 

The strong points is that GA are intrinsically parallel, 

easily distributed  and the concept are easy to understand. 

Nothing also that the optimization required less time and 

chances of getting optimal solution are more. The 

initialization with hybrid FCM-GA approach avoids local 

minima and allows the PCM clustering based image 

modelling to converge quickly. 

3.3. Image modeling with PCM algorithm 

Although FCM is a very useful fuzzy clustering method, 

its memberships do not always correspond well to the 

degree of belonging of the data, and may be inaccurate in 

a noisy environment [3]. To improve this weakness and to 

produce memberships that have a good explanation for the 

degree of belonging, Krishnapuram and Keller [32] 

relaxed the constrained condition ∑ 𝑢𝑖𝑗
𝑚 = 1𝐶

𝑖=1  of the 

fuzzy C-partition in FCM to obtain a possibilistic type of 

membership function, they then proposed the PCM 

algorithm whose membership values represent the degree 

of typicality rather than the degree of sharing and as 

consequence the FCM constraint is eliminated [56]. 

The PCM algorithm assigns typicality values 

to fuzzy membership functions [32]. Thus in PCM, the 

elements of the partition matrix, denoted by tij instead of 

uij (i = 1…C, j = 1…N), describe how compatible the input 

vectors are with the clusters represented by the computed 

cluster prototypes. Typicality values with respect to one 
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cluster do not depend on any of the prototypes of other 

clusters. 

In our case, PCM algorithm gives a set of three fuzzy 

maps corresponding to WM, GM, and CSF tissues which 

are fuzzy and absolute, and allows to compute the degree 

of membership of each voxel to brain tissue. Nothing that 

these voxels are characterized by a feature vector 

composed of its gray levels in the different images. 

PCM associates with every feature vector xj, a 

typicality degree tij ∈ [0, 1] in each of the C clusters, 
representing the degree that has xj to belong to i. In the 

PCM algorithm, each cluster is independent of the other 

clusters. Iterative optimization is used to approximate 

minima of a constrained objective function JPCM 

corresponding to cluster i. JPCM  can be formulated as [57]: 

𝐽𝑃𝐶𝑀(𝐵, 𝑇, 𝑋) =∑∑𝑡𝑖𝑗
𝑚𝑑2(𝑥𝑗 , 𝑏𝑖)

𝑁

𝑗=1

𝐶

𝑖=1

+∑𝜂𝑖∑(1 − 𝑡𝑖𝑗)
𝑚

𝑁

𝑗=1

𝐶

𝑖=1

 

 

(9) 

Where 𝜂𝑖 is a positive number that determines the distance 
at which the membership value of a feature in the cluster i 

becomes 0.5. The typicality and clusters centers update 

equations are given as follows [32]: 

𝑡𝑖𝑗 =
1

1 + [𝑑2(𝑥𝑗 , 𝑏𝑖) 𝜂𝑖⁄ ]
1 (𝑚−1)⁄  

 

(10) 

𝑏𝑖 =∑𝑡𝑖𝑘
𝑚𝑥𝑘

𝑁

𝑘=1

∑𝑡𝑖𝑘
𝑚

𝑁

𝑘=1

⁄  (11) 

The PCM algorithm is composed of the following steps:  

PCM steps 

The entries  

- 𝑋 = {𝑥𝑗 𝑗 = {1…𝑁}⁄ } the voxels set, 

- 𝑇 = (𝑡𝑖𝑗)1≤𝑖≤𝐶,1≤𝑗≤𝑁
 the matrix of typicality degrees, 

- 𝐵 = (𝑏𝑖𝑗)1≤𝑖≤𝐶,1≤𝑗≤𝑁
 the matrix of cluster centers, 

- m the degree of fuzzy 

- 𝜂𝑖 the degree of  weight possibilistic. 

-  the threshold representing convergence error. 

Step1 
Initialize the the centers vectors B(0)=[bj] using FCM-GA 
method. 

Step2 
At k-step: 

- Compute the typicality degrees matrix T(k) using Eq. (10). 
- Compute the centers vectors B(k)=[bj] using Eq. (11). 

Step3 
Update:  B(k+1) and T(k+1) 

Step4 

If ‖𝐽(𝑘+1) − 𝐽(𝑘)‖ < 𝜀 then STOP otherwise return to step 2.  

The stopping criterion defines the stability or the 

convergence of the process. In most cases, it represents the 

stability of the clusters centers by successively iterating 

the steps 2 and 3. 

Krishnapuram and Keller [32], and Barra [38] proved 

that the PCM membership of a vector 𝑥𝑗  to class i only 

depends on 𝑥𝑗  and i and not on the memberships of 𝑥𝑗   in 

all other classes (as is the case for FCM). This is very 

convenient in the case of strong ambiguity or uncertainty, 

which can occur in scan images (PVE, noise), as shown by 

clear examples in Krishnapuram and Keller [32]. 

We clustered all images with PCM algorithm, thus 

obtaining three sets of fuzzy maps: (WMMRI, GMMRI, 

CSFMRI), (WMPET, GMPET, CSFPET), and (WMSPECT, 

GMSPECT, CSFSPECT). These maps are related to three 

distributions of possibility 𝜋𝑘
𝑇 , with T∈{ CSF,GM,WM} 

and  k ∈{1..P} with P images. Where the value 𝜋𝑘
𝑇(v) is 

the membership of voxel v to tissue T computed from 

image k. 

Information of images is now represented in a 

common theoretical frame (distributions of possibility), 

and the result can now be used in the segmentation step to 

obtain the labeled image. 

3.4. Image labeling process 

After applying PCM modeling for each image, the degrees 

of possibility provided will be exploited for image 

labeling and a segmented image was finally computed 

using the three fuzzy maps obtained in the previous step. 

Each voxel v is assigned to label tissue {GM, WM, 

CSF} which corresponds to the highest degree of 

possibility in {𝜋𝐺𝑀(𝑣), 𝜋𝑊𝑀(𝑣), 𝜋𝐶𝑆𝐹(𝑣)} as follow: 

𝑖𝑓 𝑇, 𝑇′ = {𝐺𝑀,𝑊𝑀, 𝐶𝑆𝐹} 𝑎𝑛𝑑 𝑇′ ≠ 𝑇; 

 𝑣 ∈ 𝑇 𝑖𝑓 𝜋𝑇(𝑣)  > 𝜋𝑇
′
(𝑣) 

 

(12) 

4. Experiment on patients with Alzheimer's disease 

The objective of this study is to cluster registered MR, 

PET and SPECT brain images corresponding to patients 

suffering from AD according to the neuro-psychological 

assessment. A simple definition of these three types of 

scans is as follows: 

A MR scan uses a strong magnetic field and radio 

waves to create a detailed cross-sectional images of the 

patient's internal organs and tissues within the body. 

A PET scan uses radioactive tracers to produce 3-D, 

color images of the inside of the human body. It can 
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measure blood flow, oxygen use, glucose metabolism, and 

much more. 

A SPECT scan is a type of nuclear imaging test, which 

means it uses a radioactive substance and a special gamma 

camera to create 3-D pictures. It can show how blood 

flows to the heart or which areas of the brain are more 

active or less active. 

4.1. Information on participants  

4.1.1. Synthetic brain data  

PET and MR Data used to prepare this work were 

obtained from the ADNI phantom site1. The ADNI was 

launched in 2003 by the National Institute on Aging, the 

National Institute of Biomedical Imaging and 

Bioengineering, the Food and Drug Administration, 

private pharmaceutical companies and nonprofit 

organizations, as a $60 million, 5-year public-private 

partnership [37].  

We used 45 AD subjects between 55 and 90 years of 

age with all corresponding baseline MR and PET images 

are included.  

4.1.2. Real brain data 

The real images set that is available to validate tissue 

quantification approaches is a protocol developed at the 

Gabriel Mont pied Hospital in Clermont-Ferrand (France) 

[38]. We used MR, PET and SPECT scans that  concern 

five patients (three men and two women) aged 71-86 years 

suffering from AD.  

The simulated models consisted of a set of 3D fuzzy 

tissue membership volumes, one for each tissue class 

(WM, GM and CSF).  

4.2. Imaging Parameters 

4.2.1. ADNI data  acquisition  

A detailed description of MR and PET protocols and 

acquisition is as follows:   

MRI – All subjects were scanned with a standardized 

high-resolution MRI protocol on scanners developed by 

one of three manufacturers (General Electric Healthcare, 

Siemens Medical Solutions and Philips Medical Systems) 

with a protocol optimized for best contrast to noise in a 

feasible acquisition time [37]. Raw Digital Imaging and 

Communications in Medicine (DICOM) MRI scans were 

downloaded from the public ADNI site1. The MR volume 

                                                             
1
 http://adni.loni.usc.edu/ 

has 256 × 256× 176 voxels covering the whole brain and 

yielding a 1.0 mm isotropic resolution. 

PET – All the baseline PET data was downloaded 

from the ADNI web site1. PET images were acquired 30–

60 min post-injection, averaged, spatially aligned, 

interpolated to a standard voxel size, intensity normalized 

and smoothed to a common resolution of 8-mm full width 

at half maximum [58]. The reconstructed images had a 

matrix size of 256 × 256 × 207 voxels with a voxel size of 

1.2 × 1.2 × 1.2 mm3. 

 

4.2.2. Gabriel Mont pied Hospital data  acquisition  

For MR image acquisition, the T1-weighted rapid gradient 

echo sequence (TR = 2600 ms and TE = 3.0 ms) was 

selected. The slice thickness of the images is 1 mm with 

no space considered between the slices. The MR volume 

has 256 × 256 × 176 voxels which covers the whole brain 

with an isotropic resolution of 1.0 mm. 

To obtain the PET images, each patient received two 

successive scans, the first is of transmission which lasted 6 

minutes, and the second is of emission of 20 minutes 

which was started after the injection of 555 Mq of [11C]-

PIB. The size of the reconstructed images is 256 × 256 × 

207 voxels with a voxel size of 1.2 × 1.2 × 1.2 mm3. 

For SPECT images, an injection of 25 mCi (9.25 3 108 

Bq) of Tc-99mHMPAO was made. The acquisition of the 

images was then carried out after 10 minutes on a SOPHA 

DSX camera using a high-resolution parallel low-energy 

collimator. Sixty-four projections were recorded for 30 s 

each. Sixty-four slices of size 64 × 3 × 64 were then 

reconstructed using filtered back-projection with a 

Butterworth filter (cutoff frequency  0.25).  

4.3. Preprocessing 

First we developed an image of multiple regions where the 

gray level inside each region varies within certain limits. 

Then we added white Gaussian noise with different signal 

to noise ratio (SNR). A hybrid median filter was applied 

on the images. Several images of the same brain were 

created with 1% to 7 % of  additive noise, with slice 

thickness ST (1 mm) and their radiofrequency (RF) 

inhomogeneity is 20% intensity non-uniformity).  

4.4. Center initialization process for PCM modelling  

The FCM-GA clustering process is applied to a brain 

slices to get the cluster centers. The result of FCM 

clustering was used as initial population for GA. After 

69

 
___________________________________________________________________________________________________________

 International Journal of Networked and Distributed Computing, Vol. 6, No. 2 (April 2018) 63-77 



 

 

 
 

application of FCM, the gray level of each voxel in the 

volumes reflected the proportion of tissue present in that 

voxel.  So, GA based clustering algorithm are executed for 

20 generations with fixed FCM population size 15. The 

crossover and mutation probabilities are fixed as Pc = 0.8 

and Pm = 0.01, respectively. These values are chosen after 

many experiments. After convergence generation with the 

lowest fitness value [36], we choose the obtained centers 

to start the modeling by PCM. 

4.5. Tissue possibilistic modeling 

We clustered the brain images with PCM algorithm for 

which FCM-AG process has been used for centers 

initialization. The result obtained from the execution of 

the PCM algorithm to the image k ∈ {1..P} is a series of 

three fuzzy maps corresponding to the tissue T∈ {CSF, 

GM, WM} estimated from the image k, (see Fig. 2). In 

this figure and in each map, the WM, GM and CSF tissues 

are expressed by the zones with white color. 

 

Fig. 2. Computed fuzzy tissue maps derived from a MR, SPECT 

and PET images slices. 

For the parameter m which controls the degree of 

fuzziness of the resulting fuzzy maps; if m is close to 1, 

the partition generated by PCM is almost crisp, and 

memberships become fuzzier as m increases. When m 

tends to infinity.  All the memberships for a given voxel 

are equal to 1/C. There is no optimization process to 

compute the “best” m, it greatly depends on the nature of 

the data. We follow the suggestions proposed in [59] and 

we propose finding m in [1.5, 5], which gives the “best” 

partition of our brain images. Then, we have trained the 

algorithm with values in the interval [1.5, 5]. After some 

experimentation, we chose m = 2 with the application of a 

Euclidean distance and a threshold of convergence, ε = 

0.005. 

The images Information is now represented with 

distributions of possibility, so it is expressed in a common 

theoretical frame. Then the result could be used in the 

final segmentation step. 

4.6. Final segmentation  

A labeled image, created by assigning each voxel to 

the tissue class, for which it had the greatest membership. 

An example of both reference and computed segmented 

images are presented in Fig. 3. Nothing that the ground 

truth information is available from the synthetic and real 

databases. 

 

Fig. 3. Example of labeled image of a real IRM-T1 image slice. 

Tissues are labeled WM (dark gray color), GM (white color), 

and CSF (gray color). 

5. Comparative performance 

The performance of the proposed clustering method have 

been compared with some other widely used clustering 

algorithms viz., the conventional  FCM and PCM 

algorithms.  

5.1. Methods  

For comparing the performance some validity measures, 

are considered. These are defined below. 

5.1.1. Tanimoto coefficient (TC) 

 It was defined for a given tissue in computed and ground 

truth segmentation as the number of voxels that had a 
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good tissue assignment in computed segmentation divided 

by the sum of voxels of tissue assignment in ground truth 

segmentation. It is close to 1 for very similar results and is 

near 0 when the labeled images share no similarly 

classified voxels [60]. 

5.1.2. Sensitivity (SE) 

 It corresponds to the proportion of true positives (TP) 

compared to all of the voxels that should be segmented.  

𝑆𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 
(12) 

 

In our application, this indicator allows determining 

the percentage of voxels that are correctly identified as 

belonging to the tissue in question. SE tends to 1 (resp. 0) 

if there is little (resp. much) of false negatives (FN).  

5.1.3. Specificity (SP) 

It corresponds to the proportion of true negatives (TN) 

compared to all of the voxels that should not be 

segmented: 

𝑆𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(13) 

In our application, this indicator allows determining 

the percentage of voxels that are properly identified as 

belonging to complementary tissues. SP tends to 1 (resp. 

0) if there is little (resp. a lot) of false positives (FP).  

5.2. Experimental Result  

Table 1., Table 2. and Table 3. report the Tanimoto 

coefficients, sensitivity and specificity values with RF 

inhomogeneity = 20 %, slice thickness = 1 mm and 1% to 

7% of SNR, for all tissues and for different clustering 

algorithms used in this experience. We plotted also in Fig. 

4., Fig. 5. and Fig. 6.  the curves of sensitivity and 

specificity clustering indexes with SNR varying between 

1% to 7%  for visualizing the results.  

It is evident from the tables (1, 2 and 3) and figures (4, 

5 and 6) that for all images of the used techniques 

ensemble, the proposed hybrid FCM-AG-PCM clustering 

approach produces better scores compared to that 

produced by the other algorithms.  

From Table 1., Tanimoto coefficients were excellent 

for all scan images, the TC obtained with the hybrid 

FCM/GA/PCM approach were better for all tissues than 

those resulting from FCM/PCM and conventional PCM 

algorithm. 

Table 1. Comparison of fuzzy tissue volumes of 

computed and reference  labeled image with RF 

inhomogeneity = 20 %, slice thickness =   1 mm 

and SNR 7%, with using  FCM/ GA /PCM, 

FCM/PCM and PCM clustering algorithms. 

Data 

set 
TANIMOTO COEFFICIENTS 

Real database 

Ref FCM/GA/PCM FCM/PCM PCM 
WM GM CSF WM GM CSF WM GM CSF 

MR 1 0.87 0.82 0.79 0.85 0.80 0.76 0.82 0.79 0.75 

PET 1 0.90 0.81 0.77 0.87 0.80 0.74 0.85 0.75 0.70 

SPECT 1 0.88 0.79 0.80 0.86 0.77 0.76 0.85 0.75 0.74 

Data 

set 
ADNI database 

Ref FCM/GA/PCM FCM/PCM PCM 

WM GM CSF WM GM CSF WM GM CSF 

MR 1 0.90 0.80 0.79 0.87 0.78 0.75 0.84 0.75 0.74 

PET 1 0.92 0.81 0.78 0.90 0.80 0.76 0.88 0.79 0.76 

Table 2. Sensitivity for WM, GM and CSF tissues 

with SNR = 7% using FCM/GA/PCM and 

FCM/PCM clustering algorithms. 

Data 
set 

SENSITIVITY 
Real database 

FCM/PCM GA/FCM/PCM 
WM GM CSF WM GM CSF 

MR 0.85 0.83 0.77 0.87 0.86 0.77 

PET 0.84 0.80 0.78 0.86 0.83 0.80 

SPECT 0.74 0.86 0.76 0.82 0.89 0.82 

Data 

set 
ADNI database 

FCM/GA/PCM FCM/PCM 

WM GM CSF WM GM CSF 

MR 0.98 0.89 0.81 0.96 0.87 0.79 

PET 0.94 0.88 0.82 0.93 0.87 0.79 

Table 3. Specificity for WM, GM and CSF tissue 

with SNR = 7% using FCM/GA/PCM and 

FCM/PCM clustering algorithms. 

Data 
set 

SPECIFICITY 
Real database 

FCM/PCM FCM/GA/PCM 
WM GM CSF WM GM CSF 

MR 0.84 0.85 0.79 0.89 0.87 0.80 

PET 0.81 0.79 0.75 0.84 0.82 0.79 

SPECT 0.77 0.84 0.74 0.83 0.87 0.79 

Data 

set 
ADNI database 

FCM/GA/PCM FCM/PCM 

WM GM CSF WM GM CSF 

MR 0.99 0.97 0.99 0.97 0.95 0.99 

PET 0.99 0.98 0.99 0.97 0.94 0.99 

From Table 2., the proposed hybrid algorithm provides 

the best results in terms of sensibility with SNR = 7, for 

all scan images. 

Same diagnosis is in favor of the hybrid algorithm 

with respect to the results in Table 3. which represents the 

specificity. 

From Fig. 4., Fig. 5. and Fig. 6., the quantitative 

evaluation with sensitivity and specificity validity 

71

 
___________________________________________________________________________________________________________

 International Journal of Networked and Distributed Computing, Vol. 6, No. 2 (April 2018) 63-77 



 

 

 
 

measures prove the success of hybrid FCM/AG/PCM 

clustering scheme in quantifying volumes of brain tissue 

and performed well on most volumes from the real and 

synthetic data set.  The result shown in figures  

demonstrates the robustness of this method in noisy 

environment (1% to 7%).  We can also observed that for 

all tissues, the proposed hybrid FCM/AG/PCM clustering 

scheme produce better scores compared to that produced 

by the other algorithms used in the same conditions 

namely: FCM/PCM process and FCM clustering 

algorithm .  

We can see from figures that FCM algorithm is not 

stable and very sensitive to noises in comparison with  

FCM/PCM or FCM/GA/PCM clustering approaches 

which gave generally stable values, but FCM/GA/PCM 

method gave more good performance and was stable. 

Regarding the execution time, the GA/FCM/PCM 

algorithm consumed 7 s (for real images)  and 6 s (for 

ADNI images) compared to 11 (for real images)  and 9 s 

(for ADNI images)  for the PCM algorithm. 

So, the hybrid algorithm has converged more quickly 

compared to this fuzzy analog: conventional PCM 

algorithm. This is due to the empirical initialization of the 

centers of clusters with FCM/GA.  

6. Conclusion and future work 

The use of fuzzy logic for brain tissue segmentation  is 

motivated by the fact that boundaries between brain 

tissues in the images are fuzzy rather than sharp [38]. 

Adding to this, noise, PVE or anatomical and functional 

variations within pure tissue activities introduce 

uncertainty and ambiguity [59].  

We thus used a combination of fuzzy (FCM) and 

possibilistic (PCM) clustering algorithms to characterizing 

brain tissues from the anatomical and functional images, 

which the information in the images is carried out by the 

brain tissue distributions, revealing spatial locations in 

anatomical images (MRI) and distribution of a functional 

process in functional ones (SPECT, PET) [9]. The 

problem of fuzzy clustering has been posed as an 

optimization problem. So, we used GA  to give cluster 

centers.  

We model these tissue clusters by means of fuzzy 

maps, representing the distributions of possibility of 

tissues in the images. These maps assign a voxel to CSF, 

GM and WM with different absolute memberships, 

reflecting the way the voxel belongs to these tissues. To 

establish the superiority of the proposed hybrid clustering 

method, comparison has been made with several other 

well-known clustering algorithms. 

As a part of the future, we think that the proposed 

hybrid clustering process based tissue modeling can be 

improved by fusion scheme which combines the 

advantage of anatomical image and those of functional 

image.  We would be interesting to same fusion to reduce 

errors in tissue because, due to the noise and intensity 

inhomogeneity’s introduced in imaging process, different 

tissues at different locations may have similar intensity 

appearance, while the same tissue at different locations 

may have a different intensity appearance. We think that 

the fusion process could take in the count, the redundancy 

and ambiguity in images. We are currently working in this 

direction.  
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Fig.4. Curves of sensitivity clustering index for WM, GM and CSF tissue with  1%…7% SNR, using FCM, FCM/PCM and  FCM/GA/PCM  clustering 

algorithms, application for  real  database. 
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Fig. 5. Curves of specificity clustering index for WM, GM and CSF tissue with  1%…7% SNR, using FCM, FCM/PCM and  FCM/GA/PCM  clustering 

algorithms, application for  real  database. 
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Fig. 6. Curves of (a) sensitivity and (b) specificity clustering indexes for WM, GM and CSF tissue with  1%…7%  SNR, using FCM, FCM/PCM and  FCM/GA/PCM  clustering algorithms, 

application for  ADNI database. 
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