
Real-time Multi-Agents Architecture for E-commerce Servers

Sylvanus A. Ehikioya1, Cong Zhang2

1 Department of Computer Science, Baze University,
Abuja, NIGERIA

E-mail: ehikioya@gmail.com
2 Department of Elect & Comp. Engineering,

University of Manitoba
Winnipeg, MB, Canada R3T 2N2
E-mail: czhang@ee.umanitoba.ca

Abstract

Electronic commerce applications have strict timing constraints on the interactions between e-commerce servers
and customers. Customers prefer real-time services, which mean immediate response from the server shortly after
submission of a request. This trend of demand gives e-commerce servers high pressure, both on the software and
the architecture they currently use. In this paper, we propose a real-time architecture for e-commerce servers that
addresses the problem efficiently. We adopt a framework that permits the appropriate treatment of dynamic behaviours
that are data interdependent, and reasoning about the communication protocols and internal mechanisms of client / server
relationships in a real-time multi-agents based e-commerce application architecture.

Keywords: Electronic commerce, Multi-Agents, Real-time, Transactions.

1. Introduction

With “electronic commerce” becoming a very common
term to both customers and business partners, and
governments of many countries, all kinds of electronic
commerce (e-commerce for short) applications are
booming on the Internet. Although these applications
offer consumers enormous choices for product lines and
comparison product pricing capabilities, amongst other
numerous benefits, and provides e-commerce merchants
great opportunities to showcase their products (goods
and services) and tremendously increase their revenue
base in the past few years, they are not quite robust.
Both business-to-business (B2B) and business-to-
consumers (B2C) applications have strict timing
constraints on when and how long e-commerce
application / server can finish a transaction, customers
would not like to wait for a long time to place order for
their goods on a merchant’s e-commerce website. Thus,
the timing constraint becomes a critical issue in current

e-commerce applications.

E-commerce systems are reactive and cut across
multiple geographical locations and platforms, and
exhibit similar characteristics of some real-time systems
and distributed systems. According to Douglas1, 2, real-
time systems’ characteristics and issues include:

• Timeliness
• Concurrency
• Predictability
• Efficiency
• Distribution and communication
• Fault tolerance including reliability and safety
• Hardware interfacing

It should be noted that although e-commerce systems
can be classified as real-time systems, they are
generally, overall, soft real-time systems compared to
hard real-time systems where the strict fulfillment of the
timing constraints associated with the system’s

88

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

 International Journal of Networked and Distributed Computing, Vol. 6, No. 2 (April 2018) 88-98

functionality is critical in the decision to accept the
outcome of a processing activity or not.

In a distributed system, components located on
networked computers interact with one another
(communicate and coordinate their actions by passing
messages) in order to achieve a common goal. Some of
the key features of a distributed system are resource
sharing, openness, concurrency, scalability, fault
tolerance, and transparency3. Additional features4
include: quick response time, high throughput, high
reliability, and easily expandable (or modular
expansion). These are possible because of simultaneous
execution of many processes at different computers
(possibly at different locations).

E-commerce systems / applications must be responsive.
A non-responsive e-commerce website is a turn-off for
potential and current customers, thereby making the
owner merchant loose customers, potential purchases
(money), and market share. “But responsive Web design
is not only about adjustable screen resolutions and
automatically resizable images, but rather about a whole
new way of thinking about design5”. Although
responsive web design is a very challenging feature for
today’s websites, it must offer service provisioning
within time constraints, be robust, and fail safely, and
allows websites to adapt in different viewport sizes
nicely. Rams6 provides the ten commandments of good
design while The Interaction Design Foundation7 lists
seven factors (accessible, credible, desirable, finable,
useful, usable, and valuable) that influence user
experience. All these help provide great user experience
in the use of digital products. Great user experiences
translate into user pleasurable experiences that “create
the least amount of friction while delivering fluid,
seamless interaction and anticipator experiences; i.e.
having things appear as if by magic. The right things, in
the right moment, in the right way8”. We abstract these
responsive design issues in this paper but focus on the
practicalities of the craft, the technique and processes
involved in running a user-centred design project
(whether the project is agile or waterfall) in order to
maintain focus. Interested readers should see the
following resources5, 6, 7, 8, 9, 10, 11 for the details.

In this paper, we present the design of real-time multi-
agents e-commerce servers’ architecture, which includes
the components of real-time multi-agents architecture
(e.g., RTCustomerAgent, RTCardProcessingAgent,
RTBankAgent, RTSearchingAgent, RTReportingAgent,
RTWarehouseAgent, and RTShippingAgent) and how
real-time communication is achieved by adding timing
constraints / requirements. Since communication
between agents is done in real-time, the efficiency of e-

commerce transactions will be highly improved.

We adopt a framework that permits: (a). The
appropriate treatment of dynamic behaviours that are
data interdependent, and (b). Reasoning about the
communication protocols and internal mechanisms of
client / server relationships in a real-time multi-agents
based e-commerce application architecture.

By using a script (language) processor to abstract
communication protocols and internal mechanisms of
client / server relationships in the real-time multi-agents
architecture, it makes it possible to specify critical
system components and behaviours, thus enabling
formal reasoning about multi-agents. It makes it
possible to reason about and prove both static and
dynamic aspects of transactions, such as correctness,
concurrency, safety and liveness, timing relationships
as well as dependency relationships among
transactions. The ability to control, monitor, and
dynamically spawn agent coordinated events from a
script adds to the usefulness, and helps to clarify
formal action definitions within an agent network. The
combined functionality of an agent definition script
and that of the underlying preexisting programming
language, such as Java, also adds structure to the
formalisms on multi-agent transaction systems.

The contributions of this paper are: (i) Properly
contextualizes e-commerce systems / applications key
features with those of real-time systems and distributed
systems; (ii) Provides an architectural model of e-
commerce applications server with real-time features;
and (iii) The implementation of our design provides a
test-bed platform / environment for learning and gaining
practical experience in real-time multi-agents
architecture (software) design and implementation.

The rest of this paper is organized as follows: Section 2
examines the key features of e-commerce systems,
which offers the critical link to real-time systems and
distributed systems. Section 3 provides background
contexts such as agent, multi-agent, agent
communication languages, real-time systems and real-
time constraints for proper understanding of our model.
Section 4 describes our model of real-time multi-agent
architecture for e-commerce servers. Finally, in Section
5 we discuss our future work.

2. Characteristics of Electronic Commerce Systems

E-commerce systems enable customers to make online
purchases. A typical ordering process in business-to-

89

 International Journal of Networked and Distributed Computing, Vol. 6, No. 2 (April 2018) 88-98

customer e-commerce systems allows customers to
search and find items to purchase, negotiate the price of
items, add items to a shopping cart, checkout items (i.e.,
purchase items), and pay for items purchased; the
system also allows e-commerce merchants to update
their inventory, verify customers' payment methods and
plan logistics for shipping items to the customer.

E-commerce systems are inherently complex.
According to Ehikioya12, the complexity of e-commerce
systems results from the concurrent, distributed,
dynamic, and real-time behaviour and complex data
access patterns of ecommerce transactions:

(i) Concurrency: Many processes (a unit of

concurrent activity) in e-commerce transactions
may execute concurrently. This interaction may
involve communi-cation, synchronization,
cooperation, parallelization, and competing for
resources with other processes and the
environment. For example, debiting a customer's
credit card account and crediting the e-commerce
service provider's credit card company could occur
concurrently but transparent to both the user and
merchant. However, concurrency control
mechanisms (including serializations) must be in
place to preserve transaction isolation.

(ii) Distribution: E-commerce systems are inherently

distributed. An e-commerce application is usually
distributed over possibly heterogeneous databases,
web servers, networks, and operating systems
across various locations. E-commerce transactions
are characterized by complex data access patterns.
Also, distributed e-commerce transaction
processes can be invoked directly or indirectly
from remote locations.

(iii) Dynamism: Dynamic systems have a number of

states and changes are made to these states from
time to time. When e-commerce transactions
occur, various database tables are updated,
therefore, changing the database state. In e-
commerce systems, this dynamic behaviour results
in data dependencies as well as the need for proper
synchronization and communication among the
various subcomponents of the system.

(iv) Real-time Behaviour: E-commerce transactions

occur in real time. Real time implies the
interaction between the e-commerce system and
its environment occurs instantaneously. The real-
time behaviour of e-commerce is influenced by the
input environment and the application processing
requirements. The system captures input from

customers in real time. The real-time requirements
of a system usually make some constraints on the
input environment and output environment of the
system.

(v) Complex data access patterns: E-commerce

transactions inherently involve multiple data
accesses across possibly multiple independent
autonomous heterogeneous domains possibly
across multiple distinct geographic locations. The
propagation of access rights to data must be
controlled while each autonomous domain
enforces its security provisions. Besides this type
of data access patterns complexity, an e-commerce
transaction can be nested, thereby creating
complex data serialization rules. A detailed
examination of the data access patterns in e-
commerce transactions along with correctness
enforcement protocols is available in the following
resources12, 13.

Recall, e-commerce applications provide various
back-end transactional processing and information
access services across many heterogeneous
databases and different networks which requires
complex data access and interaction relationships
in order to fulfill a discrete e-commerce
objective. While the number of users in the
business-to-business domain is much smaller than
the business-to-consumer domain (e.g., the
business-to-consumer domain may involve
several million users whereas business-to-
business may involve just a few hundred or
thousand users), both require a highly reliable
system that always guarantees consistent and
correct results.

Additional essential attributes of e-commerce
applications have been identified14. In particular, these
attributes make e-commerce applications attractive
candidates for formal modelling. However, these
attributes will not be discussed in this paper.

3. Background Literature

We provide the following background material to
provide context for the design in Section 4.

3.1. Agents

Agents-based framework and support for e-commerce
transactions has gained enormous popularity and
has become a common feature of commerce on the
Internet. For example, many agents-based

90

 International Journal of Networked and Distributed Computing, Vol. 6, No. 2 (April 2018) 88-98

implementations of many different aspects of e-
commerce systems have been reported in the
literature15, 16, 17, 18, 19, 20.

An agent is an abstraction of software entity that acts for
a user or other programs and it is “capable of acting
with a certain degree of autonomy in order to
accomplish tasks on behalf of its host21”. In other words,
an agent is a set of computers environment that is
responsible for one or more specific kind of tasks. An
agent is independent and autonomous, it can perform its
function without the help of other agent or human
beings, but it can communicate (and / or cooperate) with
other agents to accomplish a task. The introduction of
the “agent” concept makes it easy to control the design
of the whole system.

Many definitions of the properties and functionality
of an agent exist. Wooldridge and Jennings22 describe
agents as problem solving entities that have
autonomy, social ability, pro-activeness and
responsiveness. Autonomy is the ability of an agent to
act on its own without any interference from users or
other agents on its prescribed tasks. Social ability
allows the agent to communicate with other agents or
users. Pro-activeness refers to the ability of an agent
to initiate some action when appropriate. Finally,
responsiveness implies that agents understand their
environment and can react accordingly to changes in
it. Ehikioya and Walowetz15 gave similar criteria for an
agent in addition to agents' mobility characteristics,
which means an agent can move throughout the
network. Christoffel et al. argued23 that agents allow
users to interact in a uniform manner with a
complicated system and help combat information
overload while representing their interests. Similar
properties of agents are available19, 24, 25, 26 in the
literature. According to Guttman and Maes27 and Maes
et al. 26, agents system can model the behaviours of its
user through their intelligence. Intelligent agents are
designed to perform analysis and make decisions
based on the user's best interests24. The flexibility and
enormous capabilities of agents make them suitable
technology for e-commerce transactions negotiations28.

We do not examine the features of agents in this paper
beyond that necessary to model e-commerce transactions.
We draw on available agents communication theory in the
literature. It suffices, however, to note that multi-agents
systems focus on cooperation and collaboration, joint
goals and plans, and information sharing. This is
synonymous to the phenomenon in the termite colony15
model. The authors assume readers’ familiarity with the

agent paradigm.

3.2. Multi-Agent

A multi-agent system consists of multiple agents.
Although agents are autonomous, in order to accomplish
complex tasks, they need to communicate with one
another and cooperate together. The advantage of using
multi-agents is that it offers a bouquet of multiple
solutions and multiple services. For every
communication, there is one agent sending request
(called requestAgent) and multiple agents serving the
request (called serviceAgent). The requestAgent may
broadcast its request with the service it is expecting,
then serviceAgents receive the request, based on the
parameter of the request, they check their available
service, if their service meets the request, they respond
to the requestAgent. The requestAgent may receive
multiple replies from the serviceAgents; however, it
chooses the most appropriate serviceAgent to perform
its task.

Our multi-agents system architecture draws from the
knowledge and theories of service oriented architecture
(see Fig. 1a.) well established in the literature29, 30,
whereby services can be provided locally or outsourced
to external service providers. Our architecture uses the
simple object access protocol (SOAP) standard (a
message exchange standard that supports service
communication) and web service definition language
(WSDL) standard that allows a service interface and its
binding definitions. The binding maps the abstract
interface to a set of protocols that specifies how (or
rules) to communicate with a web service, a
fundamental ingredient of web-based applications,
including e-commerce systems.

Fig. 1a. Service Oriented Architecture29

In most cases, this request-and-reply communication is
not done directly between requestAgent and
serviceAgent. A broker is introduced to deal with the
multiple requests and multiple services. At the
beginning, every serviceAgent registers its available
services including name, OS, reliability, QoS, available
time, etc. with a broker. When requestAgent has a task

91

 International Journal of Networked and Distributed Computing, Vol. 6, No. 2 (April 2018) 88-98

with some parameters (intended OS, reliability, etc.) to
be executed, it will not send this request directly to
multiple serviceAgents, instead, it sends its request to
the broker. The broker matches requestAgent’s request
with serviceAgents’s registration information, if it finds
matched pair, it will forward requestAgent’s request to
the appropriate serviceAgent available. Thereafter, the
requestAgent could communicate with the selected
serviceAgent directly. Fig. 1b. describes the
communication procedure among multi-agents.

Fig. 1b. Communication among Multi-Agents

The introduction of the broker simplifies the
communication between requestAgent and
serviceAgent, and reduces communication time and
overhead. For a detailed examination of multi-agents in
e-commerce environments, interested readers should see
the following resources15, 28, 31.

3.3. Agent communication language

As we mentioned in Subsections 3.1 and 3.2, agents
communicate with one another. Communication among
multiple agents requires a framework and protocol that
governs how agents interact with one another. The agent
communication language provides the framework and
protocol for interactions among agents. Communication
between any two agents is akin to communication
between two networks at the same network level, both
ends should follow the same standard protocol.

3.3.1 Knowledge query and manipulation language

Knowledge Query and Manipulation Language
(KQML) is a popular agent communication language
and protocol for exchanging information and
knowledge. KQML is both a message format and a
message-handling protocol to support run-time

knowledge sharing among agents32. KQML is a widely
used agent communication language, and it provides
“performatives” / primitives to define the interactions
between agents. Examples of such primitives are:

Advertise: service agents register services with
broker agent

Ask request agent requests service
agents to perform a task

Tell: provide other agents with its service
information

Monitor: watch another agent for a particular
condition

…

For example, a message representing a query about
price of Air Canada tickets might be encoded33 as:

(ask
 :content(PRICE AirCanada?price)

 :receiver TicketQueryBroker
 :language LPROLOG
 :ontology MYSE-TICKS)

3.3.2 Notation Agent Language (NAL)

In this paper, we focus on the application layer, thus we
do not examine the details of how the agent
communication language is implemented and linked to
lower layers (middleware and operating system). To
simplify our discourse, we introduce Notation Agent
Language (NAL) to describe the communication
between multiple agents.

Ask:
Qos >= 80%
Reliability Level >= 9
OS—SUN, LINUX

(requestAgent)
Request Service

Register:
Server Name--Silver
Qos—99%
Reliability Level—10
OS—SUN

(serviceAgent)
Service Register

Fig. 2. Notation Language of Multi-Agents

The NAL is flexible and amenable to use for formal
modeling of agents-based systems (see Fig. 2. above).

We extended its basic primitives to support real-time
features to suite the modeling and specification of the
real-time multi-agents systems. See Section 3.5 for a
brief basic introduction.

3.4. Real-time systems

A real-time system is a system where the correct

92

 International Journal of Networked and Distributed Computing, Vol. 6, No. 2 (April 2018) 88-98

functioning of the system depends on the results
produced by the system and the time at which these
results are produced34. Real-time systems are generally
categorized into two types:
• Soft real-time systems, where operation is degraded if

results are not produced according to specified timing
requirements.

• Hard real-time systems, where operation is incorrect
if results are not produced according to the timing
constraint specification.

In this paper, we focus on soft real-time systems. When
the server is unable to finish its tasks in the specified
time period, the operation is degraded; that is, the QoS
is degraded.

3.5. Real-time constraints

As discussed in Section 1, many e-commerce
applications rely on real-time features, so they require
service provisioning in real-time; otherwise the QoS
will degrade significantly. To finish a task in real-time,
the requestAgent should submit its request with
specification such as “you should finish the job in 2
seconds” or “you should finish the job before 5:50pm
March 26, 2002, CST”, etc. These specifications are
called timing constraints. By adding timing constraints
to the request, the broker could find the appropriate
serviceAgent to perform the job efficiently.

The timing constraints could be expressed in different
languages. DiPippo et al 33 extended KQML
performatives with expressions of time for both
specification of timing capabilities and constraints. An
example of such extension, following the style
provided33, is given below:

(ask
:content(PRICE AirCanada?price)

 :receiver TicketQueryBroker
 :language LPROLOG
 :ontology MYSE-TICKS

:deadline 3 seconds)

(register

:language Prolog
:content(PRICE ?x ?y)
:exectime 2 seconds)

In a similar way, we could extend our NAL to RT-NAL
by add timing constraints in the format shown in Fig. 3.

In RT-NAL multi-agents communication system, when
RTserviceAgent registers its service with a broker, it
includes “Execution Time -- 2 sec”. When a
requestAgent sends a request to broker, it includes

“Deadline -- 3 sec”.

RT Ask:
Qos >= 80%
Reliability Level >= 9
OS—SUN, LINUX
Deadline—3 sec.

(RTequestAgent)
Request Service

RT Register:
Server Name--Silver
Qos—99%
Reliability Level—10
OS—SUN
Execution time—2 sec.

（RTserviceAgent）
Service Register

Fig. 3. Real-time Notation Language for Multi-Agents

The broker compares the two parameters of the
serviceAgent and requestAgent to determine if the
following condition is supported:

RTAsk.exectime <= RTRequester.deadline

That means the serviceAgent could perform the service
asked by the requestAgent. In this way, the broker
would find the best service for the requester and ensures
the guarantee of real-time service provisioning.

4. Real-Time Architecture for E-Commerce Servers

In this section, we describe the methodology and design
of our model of real-time multi-agent architecture for e-
commerce servers.

4.1 Problems in the current architectures

We adopt a very simple working example to illustrate
the problems in the current architectures; however, it is
expressive enough to provide the solution directions and
motivation for our design. Consider an example, a
customer Nancy wants to buy an air ticket for an
emergency meeting which will be held five days later in
Taiwan:

1. She went to an airline online booking website,

clicked the “search” button, after 60 seconds, she
gets the search results (violates real-time searching
policy);

2. She found a proper flight, she input her personal

information and credit card details, and then clicked
the “submit” button. There is no response whether
her credit card is valid or not, whether she has
enough money or not. After two days, she received
an email that her card number is incorrect, so she

93

 International Journal of Networked and Distributed Computing, Vol. 6, No. 2 (April 2018) 88-98

needs to submit the order form again (violates the
real-time credit card processing policy);

3. Nancy had to go to the website again to fill in order

form. This time, she is very careful, she typed all
the characters and numbers one by one, then
clicked the “submit” button very carefully. After 30
seconds, she receives a receipt from the website
(violates the real-time reporting policy);

4. Then, Nancy kept waiting and waiting, waiting for

the air-ticket she has ordered, this time, she did not
receive any email, even no email ask her to type her
credit card again, may be that means she was
correct the last time. But with time flying, she
became nervous, there is only one day left before
the meeting. Finally, she received her ticket on the
6th day, but the meeting has been missed, what a
pity. This is caused by the non-real-time shipping
system, the air ticket warehouse did not receive
customers request immediately (violates the real-
time shipping policy).

Through this example, one could imagine the level of
frustration and disappointment Nancy had, and thus
criticality of real-time support for e-commerce servers.

4.2 The real-time architecture

To resolve the above embarrassing situation, we
propose a real-time multi-agents architecture, illustrated
in Fig. 4.

In this architecture, we introduce multiple real-time
agents: RTCardProcessingAgent, RTCustomerAgent,
RTSearchingAgent, RTReportingAgent and
RTShippingAgent. Let us consider the same situations
as in Subsection 4.1, but this time she goes to a real-
time e-commerce website:

1. RTCustomerAgent is the representative of

customers; it can communicate with other agents in
real-time. Once Nancy logs in to a website, she is
served by an RTCustomerAgent. When she
searches for an air-ticket, the RTCustomerAgent
sends her request to RTSearchingAgents with a
timing constraint — “deadline 10 sec”, the
RTSearchingAgent with “execution time <=10 sec”
contacts Warehouse in real-time and sends
responses to RTCustomerAgent, so Nancy receives
the search results within 10 sec. The non-real-time
search problem is now addressed.

2. Nancy selects the proper flight, and completes the

application form, and her credit card details, the

RTCustomerAgent sends her information to the
agent responsible for card processing, the
RTCardProcessingAgent. The next step is that the
RTCardProcessingAgent processes her card
immediately by using a Real-time Credit Card
Processing Architecture (see Fig. 5.). After 5
seconds, she receives a notice “Your Card is not
valid, please check your card number again…” She
makes mistakes again, but this time she is notified
in real time. So she can re-fill the order form
immediately, she does not have to wait for two
days. Thus, the non-real-time credit card processing
problem is addressed.

Fig. 4. Real-time Multi-Agents Architecture for
 E-commerce Servers

3. After Nancy refill her card information,

RTCardProcessingAgent checks her card with Bank
in real time, within in 5 seconds, Nancy is notified
that her card is verified, she could proceed with her
shopping.

4. Nancy’s order form is submitted to the

RTShippingAgent with the timing constraint
“response in 10 sec, ship in 1 day”.
RTShippingAgent receives the order form, it does
real-time response, Nancy receives the order receipt
within 10 senconds, and receives her tickets in one
day. Thus, the non-real-time reporting and non-
real-time shipping problems are all well addressed.

94

 International Journal of Networked and Distributed Computing, Vol. 6, No. 2 (April 2018) 88-98

4.3 Class pseudo code of the real-time architecture

We provide the pseudo-code of the classes in our
architecture.

4.3.1 Real-time searching class

The RTCustomer Agent is a requestAgent, while the
RTSeachingAgents are serviceAgents.

Public Class RTSearching {

// RTSearchingAgents register their service abilities to
RTBroker
File RTSearchingAgent.register(QoS,

Reliability, OS, ExecuteTime)
sendFile(serviceFile, BrokerIP);

// RTCustomerAgent is activated by a customer, then it
asks available service from RTSearchingAgents
RTCustomerAgent.activate();
File RTCustomerAgent.ask(QoS, Reliability,

 OS, TimeConstraints);
sendFile(requestFile, BrokerIP);
… …
//RTBroker compares the requestFile and serviceFile to
find the proper service agent
String RTBroker.compareTo(requestFile,

 serviceFile)
{return proper RTSearchingAgent machine’s

name};
//RTCustomerAgent connects to the proper RTSearching
Agent
RTCustomerAgent.connectTo(RTSearching-

Agent);
//the selected RTSearchingAgent searches warehouse
with specific keywords, return the available stocks
Vector RTSearchingAgent.search(Warehouse,

keywords)
{return warehouse stocks};

}

4.3.2 Real-time credit card processing class

The real-time credit card processing is more complex
than other real-time aspects of e-commerce applications.
It not only involves adding timing constraints to the
communication, but it also involves a new architecture
design to address real-time credit card processing
problem.

Real-Time Credit Card Processing means that when a
web site’s customer conducts an online purchase, the
credit card information is conveyed to the Processor at
that exact time so that an authorization can be requested
and received at that moment. Real-time processing
always implies that a Secure Payment Gateway is being

utilized, whether proprietary or third party35. In our real-
time credit card processing architecture design (see Fig.
5.), a third party is introduced to do real-time card
verification and processing.

Fig. 5. Real-time Card Processing

When the RTCardProcAgent receives a card processing
request, it forwards the request to the third party, the
third party can process the request and verify the request
immediately, thus, in 5-10 seconds, the receipt will be
shown on customer’s web page or sent to customer’s
email.

In this way, the following actions will be performed in
real-time and parallel but as an atomic unit:

Credit(MerchantAccount, amountOfMoney);
Debit(CustomerAccount, amountOfMoney);
InformShippingAgent(Warehouse)

Real-time Credit Card Processing benefits both
customers and merchants. For customers, they can
finish their shopping in a short period, and receive their
purchases very quickly. For merchants, they can sell
their goods quickly and get back revenues.

The pseudo codes are as follows:

Public Class RTCardProcessing {

// RTCardProcAgents register their service abilities to
 Broker
File RTCardProcAgent.register(QoS,

95

 International Journal of Networked and Distributed Computing, Vol. 6, No. 2 (April 2018) 88-98

Reliability, OS, ExecuteTime)
sendFile(serviceFile, BrokerIP);

// RTCustomerAgent is activated by a customer, then it ask
available service from RTCardProcAgents
RTCustomerAgent.activate();
File RTCustomerAgent.ask(QoS, Reliability,

 OS, TimeConstraints);
sendFile(requestFile, BrokerIP);
… …
//RTBroker compares the requestFile and serviceFile to
find the proper service agent
String RTBroker.compareTo(requestFile,

 serviceFile)
{return proper RTCardProcAgent machine’s

 name};

//RTCustomerAgent connects to the proper RTCardProc
Agent
RTCustomerAgent.connectTo(RTCardProc-

 Agent);

//the selected RTCArdProcAgent forward
 RTCustomerAgent’s request to the third party.
RTCardProcAgent.forward(thirdPartyIP,

 cardInfo, AmountOfMoney)

// Thrid Party validate the credit card information
String ThridParty.Validate(cardInfo,

 AmountOfMoney, RTCardProcAgentIP)
{return the validation result;}

//Third party process the crediting the merchant account
and debiting customer account
ThridParty.process(AmountOfMoney, MerchantAccount,
CustomerAccount){

Credit(MerchantAccount, amountOfMoney);
Debit(CustomerAccount, amountOfMoney);

};

//Third party inform RTCardProcAgent and
 RTReportingAgent the amount of money charged
ThirdParty.inform(RTCardProcAgentIP, amountOfMoney)

}

3.3.3 Real-time reporting class

Public Class RTReporting {
// RTReportingAgents register their service abilities to
 Broker
File RTReportingAgent.register(QoS,

Reliability, OS, ExecuteTime)
sendFile(serviceFile, BrokerIP);

// RTCardProcrAgent ask available service from

 RTReportingAgents
File RTCardProcAgent.ask(QoS, Reliability,

OS, TimeConstraints);
sendFile(requestFile, BrokerIP);
… …
//RTBroker compares the requestFile and serviceFile to
 find the proper service agent
String RTBroker.compareTo(requestFile,
 serviceFile)
{return proper RTReportingAgent machine’s

name};

//RTCardProcAgent connects to the proper RTReporting
Agent

RTCardProcAgent.connectTo(RTReporting-Agent);

//the selected RTCardProcAgent inform
 RTReportingAgent’s with the amount of money charged
RTCardProcAgent.inform(RTReportingAgent

IP, amountOfMoney)

//Generate report and display
Vector RTReportingAgent.generateReport();
Display on the screen;

}

4.3.4 Real-time shipping class

Public Class RTShipping {
// RTShippingAgents register their service abilities to
 Broker
File RTShippingAgent.register(QoS,

Reliability, OS, ExecuteTime)
sendFile(serviceFile, BrokerIP);

// RTReportingAgent ask available service from
 RTShippingAgents
File RTReportingAgent.ask(QoS, Reliability,

OS, TimeConstraints);
sendFile(requestFile, BrokerIP);
… …
//RTBroker compares the requestFile and serviceFile to
 find the proper service agent
String RTBroker.compareTo(requestFile,

serviceFile)
{return proper RTShippingAgent machine’s name};

//RTReportingAgent connects to the proper
 RTShippingAgent
RTReportingAgent.connectTo(RTShipping-Agent);

//the proper RTReportingAgent inform RTShippingAgent
 with the order information
RT.ShippingAgent.inform(warehouse, order)

96

 International Journal of Networked and Distributed Computing, Vol. 6, No. 2 (April 2018) 88-98

//the RTShippingAgent inform warehouse to ship the goods
 to customer
RT.ShippingAgent.inform(warehouse, order)
Warehouse.decreaseGoodsAmount(numberOfOrder)
Warehouse.shipToCustomer();

}

We use a script processor (compliant with the SOAP
standard) to abstract communication protocols and
internal mechanisms of client / server relationships in
the real-time multi-agent architecture. Ehikioya and
Walowetz15 formally defined a script language, Multi-
Agent Processing Language (MAPL), for reasoning
about multi-agents. A scripting language provides a
method of accomplishing multi-agents interdependence.
Having the ability to control, monitor, and
dynamically spawn agent coordinated events from a
script adds to the usefulness, and helps to clarify
formal action definitions within an agent network. The
combined functionality of an agent definition script
and that of the underlying preexisting programming
language, such as Java, also adds structure to the
formalisms on multi-agent transaction systems.

We note that the multi-agents in our system being
mobile, they can travel from one site to another in a
network performing tasks on behalf of the service
request; e.g., collecting information, accessing database
resources, and returning the result. Furthermore, they
may make many invocations to local resources at each
site they visit while executing an e-commerce
transaction.

5. Summary and Future Work

The rising popularity of e-commerce will continue
unabated in the foreseeable future and consumers
increasing demand for better quality of experience from
service providers, including e-commerce merchants will
remain high. Thus, the QoS provisioning in most current
e-commerce applications is inadequate and there is need
for real-time support by e-commerce servers, as a matter
of conscious design. We have demonstrated this as
practicable and crucial in meeting certain e-commerce
transactions’ requirements in today’s everyday
sophisticated consumers’ transactions requests.

Although the real-time e-commerce servers architecture
has been proposed and partially implemented, more
detailed implementation should be pursued in future by
combining some middleware and operating system
support to realize some of the critical real-time features.

References

1. B. P. Douglass, Real-Time UML, in Formal Techniques
in Real-Time and Fault-Tolerant Systems. Lecture Notes
in Computer Science, Vol. 2469, eds. W. Damm and E.
R. Olderog (Springer, Berlin, Heidelberg, 2002).

2. B. P. Douglass, Real Time UML: Advances in the UML

for Real-time Systems, 3rd Edition (Addison-Wesley
Professional, 2004).

3. G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair,

Distributed Systems: Concepts and Design, 5th Edition
(Addison Wesley / Pearson Education, May 2012).

4. Er. R. Chopra, Operating Systems: A Practical Approach,

Revised Edition (S. Chand and Company Ltd, New
Delhi, India, 2012).

5. Smashing Editorial, “Responsive Web Design: What It Is

And How To Use It”, Smashing Magazine, January 12th,
2011. (Available at: https://www.smashingmagazine
.com/2011/01/guidelines-for-responsive-web-design/).
Accessed on February 23, 2017.

6. D. Rams, Ten Principles for Good Design, (Available at

http://www.manifestoproject.it/ten-principles-for-good-
design/) Accessed on June 29, 2017.

7. The Basics of User Experience Design, The Interaction

Design Foundation, (available at http://www.interaction-
design.org). Accessed on June 29, 2017.

8. M. Philips, Never Just Design Pretty Little Apps,

(Principal User Experience Designer, March 21, 2017).
(Available for free download at https://blog.prototypr.io
/@miklosphilips) Accessed on June 29, 2017.

9. J. Moule, Killer UX Design (SitePoint Pty Ltd, 2012).

10. T. Firdaus, Responsive Web Design by Example:

Beginner’s Guide (Packt Publishing, 2017).

11. J. Lang and E. Howell, Researching UX: User Research

(SitePoint Pty Ltd, 2017).

12. S. A. Ehikioya, Specification of Transaction Systems

Protocols (Ph.D. Thesis, University of Manitoba,
Winnipeg, 1997).

13. S. A. Ehikioya and K. E. Barker, A Formal Specification

Strategy for Electronic Commerce, in Proceedings of
IDEAS '97: International Database Engineering and
Applications Symposium, August 25-27, 1997 (Montreal,
Canada, 1997).

14. S. A. Ehikioya and K. Hiebert, A Formal Model of

Electronic Commerce, in First International Conference
on Software Engineering, Networking, and Parallel and
Distributed Computing, May 19-21 2000 (Champagne-
Ardenne, France, 2000).

97

 International Journal of Networked and Distributed Computing, Vol. 6, No. 2 (April 2018) 88-98

https://www.smashingmagazine.com/author/newsletter-team/
https://www.smashingmagazine.com/2011/01/guidelines-for-responsive-web-design/
https://www.smashingmagazine.com/2011/01/guidelines-for-responsive-web-design/

15. S. A. Ehikioya and T. Walowetz, A Formal Specification

of Transaction Systems in Distributed Multi-Agents
Systems. in ISCA 14th International Conference on
Computers and Their Applications, (Cancun, Mexico,
April 7-9, 1999), pp. 378-383.

16. AuctionBot. (Available: http://auction.eecs.umich.edu/)

17. M. Balabanovic, Learning to Surf: Multiagent

Systems for Adaptive Web Page Recommendation
(Ph.D Thesis, Department of Computer Science,
Stanford University, Stanford, CA 94305-90250,
March 1998).

18. A. Moukas and G. Zacharia, Evolving Multiagent

Filtering Solution in Amalthaea, in Proc. of the 1st
International Conference on Autonomous Agents
(February 1997), pp. 394-403.

19. B. Aoun, Agent Technology in Electronic

Commerce and Information Retrieval on the
Internet, in Proceedings of AUSWEB96, 1996. (Also
available at: http://www.scu.edu.au/sponsored/
ausweb/ausweb96/tech/aoun/paper.html)

20. R. lnder, M. Hurst, and T. Kato, A Prototype

Agent to Assist Shoppers, in Proc. of WWW7, 1997.
(Available at: http://www7.scu.edu.au/programme/
posters/1856/com18S6.htm)

21. Wikipedia, “Software Agent”, (Available at

https://en.wikipedia.org/wiki/Software_agent) Accessed
Oct. 5, 2017.

22. M. Wooldridge and N. R. Jennings, Intelligent

Agents: Theory and Practice, Knowledge
Engineering Review, 10 (2), pp. 118 – 152

23. M. Christoffel, S. Pulkowski, B. Schmitt. and P.

Lockemann, Electronic Market: The Roadmap for
University Libraries and Members to Survive in the
Information Jungle, SIGMOD Record, Volume 27, #4,
December 1998 (Special Section on Electronic
Commerce).

24. J. Domingo-Ferrer and J . Herrera-Joancomarti, An

Anonymous Electronic Commerce Scheme with an
Off-Line Authority and Untrusted Agents, SIGMOD
Record. Volume 27, #4, December 1998 (Special
Section on Electronic Commerce).

98

 International Journal of Networked and Distributed Computing, Vol. 6, No. 2 (April 2018) 88-98

	1. Introduction
	2. Characteristics of Electronic Commerce Systems
	3. Background Literature
	3.1. Agents
	3.2. Multi-Agent
	3.3. Agent communication language
	3.4. Real-time systems
	3.5. Real-time constraints

	4. Real-Time Architecture for E-Commerce Servers
	5. Summary and Future Work
	References

