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Abstract. The multi-source dynamic feature recognition of mechanical nonlinear 

multi-failure mode is a technical bottleneck and problem encountered in the 

application of fault diagnosis in the process industrial production line. It needs not 

only to extract the time-frequency characteristics of the single-source fault signal but 

also to ensure the corresponding relationship between the nonlinear variable, 

multi-fault mode and multi-source fault features in time, frequency and space after 

feature extraction. Mechanical multi-source signals also have coupling, aliasing, and 

other phenomena that cause the characteristic signals between the channels to 

interfere with each other and overlap. In order to meet the requirements of automatic 

monitoring and fault diagnosis of industrial process production lines, this paper 

develops multi-source dynamic feature recognition and adaptive diagnosis. This 

paper studies the multi-scale parallel factorization theory and proposes a 

three-dimensional time-frequency space model reconstruction algorithm for 

multi-source feature factors, which improves the accuracy of mechanical fault 

detection and intelligent levels 

Introduction 

When the mechanical equipment is subjected to unsteady state excitation in the 

process industrial production line, the vibration signal contains an obvious frequency 

shift characteristic. The fault feature signal will flow at each vibration collection 

point as the nonlinear failure mode changes. The two-dimensional time-frequency 

characteristics of the extracted signal are fuzzy, uncertain and incomplete. The 

method of single-channel signal extracting two-dimensional time-frequency feature 

like wavelet theory cannot reflect the intrinsic relationship of non-linear changes 

between multi-source channel feature signals and cannot eliminate information 

interference[1-3]. Dual-channel signal feature extraction methods such as holographic 

spectrum and global vector spectrum are used for the axis motion of the rotating 

machinery to establish signal frequency, amplitude, cross-section frequency or 

cross-sectional phase, where each channel signal is analyzed independently[4-5]. It 

can be seen that we cannot separate multi-source signals into single signals to extract 

two-dimensional time-frequency features independently. Multi-fault mode 

multi-source dynamic feature extraction is a multi-scale parallel factorization of 

multi-source signal matrix including process state variables, vibration signals, etc[6]. 
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It not only extracts the nonlinear time-frequency fault feature information of 

single-source signal, but also completes the fusion of multi-source feature signal 

simultaneously. The parallel factorization theory ensures the optimization of the 

nonlinear relationship between process state variables, failure modes and 

multi-source vibration signatures in time, frequency and spatial feature vector space 

after feature extraction[7]. 

Multi-scale Parallel Factorization Theory Algorithm 

The parallel factor trilinear model is the easiest way to extend factor analysis algebra 

from two dimensional to three dimensional, The form is as follows: 

1 1 2 2ij i j i j iR iR ijx a f a f a f e    L                                         （1） 

Where Xij is the data of row i, column j of matrix X. "ailfj1,...,airfjr,...,aiRfiR" 

represents the contribution factor of the observed value. "eij" is the residual value and 

its properties depends on whether it fits the principal component or the common 

factor model. The parameters air and fjr represent loading factors and component 

factors, respectively, which have different standardized rules and evaluation methods. 

In general, the two sets of factors play the same role as representing a specific layer 

of factor influence and importance values in a particular pattern of data. The two sets 

of parameters affect the variable, proportionally reducing or increasing the 

contribution of the factor from one layer of the specific pattern to the next. If you add 

a set of parameter modes C, the model is trilinear. Adding other additional modes, it 

will become a multi-linear module. The trilinear model is defined as: 

1 1 1 2 2 2ijk i i i i i i ir ir ir iR iR iR ijkx a b c a b c a b c a b c e      L L                           （2） 

The uniqueness principle of the parallel factor model is that if the influence 

variables of each factor in the three patterns of data have different rules from other 

factors, one load factor of the data matrix subset increases or decreases in proportion 

to the other factor. The study of the uniqueness of trilinear decomposition is a 

continuous research hotspot. Uniqueness is the determination of the direction of the 

vector axis of the most scientifically significant factor in a certain factor space. This 

principle provides a method to determine the direction of the unique axis that is 

looking for a subset of the data matrix in a certain factor space along a set of 

consecutive directions stretching or contracting proportionally. The reliability of the 

factor vector axis direction needs to be tested by other methods. The best direction of 

the factor vector axis is to optimize the three-linear factor model to fit 

three-dimensional data. 

This section introduces the multi-scale parallel factorization theory algorithm and 

defines the "loading" factor and "component" factor of the parallel factorization. This 

section also analyzes the selection methods and criteria of the most scientific factor 

vector axes for a particular factor vector space. Combining multi-scale analysis 

theory, a multi-scale parallel factorization optimization algorithm for extracting 

nonlinear single-source fault feature signals is established. The multi-scale analysis 

theory improves the accuracy of time-frequency space 3D feature analysis of 
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nonlinear feature signals so that the feature factor signals are successfully obtained 

from matrix factors. The data matrix 
 d f tN N N

S
 

 is a three-dimensional time-varying 

spectrum array obtained by the wavelet transform of the vibration signal. dN ,
fN and

tN  are the number of channels, frequency steps and number of data points, 

respectively. The basic structure of the Parallel Factor Analysis (PARAFAC) 

decomposition model[8] is shown in Figure 1. 





kN

k

ikfkdkdft cbaS
1

ˆ                                                     (3) 

The key issue of this model is to find the matrix A, B and C. Their elements are dka ,

fkb and tkc . Each component k represents an atom. The corresponding vectors  dkk aa  , 

 fkk bb  and  tkk cc   are spatial signals, spectral signals and temporal signals for 

each atom. The uniqueness of the solution is guaranteed by 
      22  kNCrankBrankArank . The vector  1dNka  produced by PARAFAC is 

the k-th component space vector, the vector  1fNkb  is the k-th component of the 

spectrum and the vector  1tNkc is the k-th component of the time signal. The main 

advantage of this method is that the spectrum decomposition of the time-varying 

vibration signal is unique and the best model can be obtained under the principle of 

minimum squared error. 

The multi-scale parallel factorization algorithm is presented as follows: 

(1) Multi-scale time-frequency decomposition. 

(2) Determine the number of factors F. 

(3) Initialize load matrix B and C. 

(4) Load matrices B and C to estimate A by the least-squares regression algorithm, 

that is 

 ' ' 1( )A XZ ZZ Z b c  ， . 

(5) Similarly, estimates B and C. 

(6) Calculate continuously from step (3) until convergence. 
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Figure 1 The model of multi-scale parallel factor (PARAFAC) decomposition 

Mud Pump Fault Diagnosis Based on Parallel Factor Analysis 

Process multi-source dynamic signal acquisition system in process industry is shown 

in Figure 2. The system can simultaneously achieve acquisition of real-time signals 
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such as flow, pressure, speed and vibration. The speed of the sediment pump is 

controlled by the motor and the rotation speeds are 1200rpm, 1400rpm, 1600rpm, ... 

until the 2800rpm. The non-linear multi-failure mode is modeled by controlling the 

flow and pressure of the process loop for simulating the nonlinear operating state of 

the process industrial process mechanical system. The process industrial sediment 

pump experimental system collected the data of pipeline pressure, motor rated power, 

motor speed, pump inlet and outlet pressure in the nonlinear failure mode. Because 

the mechanical structure generates more nonlinear components under the action of 

fluid rheology, the nonlinear frequency components of vibration are more 

complicated. 

 

Figure 2  Experiment system of sediment pump 

This experiment collected the pipeline pressure, motor rated power, motor speed, 

pump inlet and outlet pressure in the normal mode and failure mode of the sediment 

pump experiment system. Figure 3 shows the three-dimensional time-frequency 

signal obtained by multi-scale wavelet decomposition for the collected pipeline 

pressure, motor rated power, motor speed, pump inlet and outlet pressures. The 

abscissa, ordinate, and vertical coordinates represent time, frequency, and amplitude, 

respectively. It is shown about the multi-scale parallel factorization of vibration 

signals in Figure 4. After three-dimensional time-frequency signals are decomposed 

by multiple layers of parallel factorization, amplitude loading factors, frequency 

loading factors and time loading factors can be obtained. The ordinate represents the 

loading value, which is the size of the judging factor. In the multi-scale parallel 

factorization of the vibration signal in FIG. 4 , the left side shows the normal state 

and the right side shows the failure state. Compared with the decomposition results of 

the normal state and the failure state, there are obvious differences in the frequency 

loading factor components, so the frequency loading factor is effective and can 

successfully identify the failure. 
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Figure 3  Three-dimensional time-frequency signal 

 

 

 

Figure 4  Multiscale parallel factorization of vibration signals 

Conclusion 

In this project, the relationship between the characteristics of nonlinear flow 

conditions, fault sources, various vibration sources and multi-source nonlinear 

vibration signals is established under the mechanical fault conditions. The vibration 

characteristics of various sources of vibration and faulty parts of the mud pump are 

analyzed under flow field conditions, and the relationship between the nonlinear flow 
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conditions and vibration characteristics is established. Multi-fault mode multi-source 

dynamic feature extraction is a multi-scale parallel factorization of multi-source 

signal matrix including process state variables, vibration signals, etc. It not only 

extracts the nonlinear time-frequency fault feature information of single-source signal 

but also completes the optimization of multi-source feature signal fusion at the same 

time. This guarantees the best non-linear correspondence between process state 

variables, fault modes and multi-source vibration signatures after feature extraction in 

3D feature vector space of the time, frequency and space. It reconstructs a unique 

time-frequency-space three-dimensional vector space nonlinear fault feature model 

corresponding to multi-source signals to achieve adaptive identification of 

multi-source fault features and improve diagnostic accuracy. 
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