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Abstract. Permanent magnet synchronous motors ( PMSM) will demonstrate the complex dynamic 
behaviors under certain parameters and operation conditions. The performance of PMSM will 

degrade because of dynamic behaviors,a method of controlling chaos by designing a robust 
finite-time stability controller is developed to guide chaotic motion towards regular motion. The 

controller combines with Controlling Lyapunov Function method and finite-time stability theory. 
The controller not only has strong robustness and good responsiveness but also is simple and easy 

to be realized with few parameters processing. The simulation results show that the method of 
controlling permanent magnet synchronous motor chaotic system is effective. 

Introduction 

With the development of power electronics technology and control technology, permanent magnet 

synchronous motor (PMSM) will be widely used in industry .Chaos in the permanent magnet 
synchronous motor and its control is a area of active research in the field of numerical control 

machine.The permanent magnet synchronous motor is a kind of typical multivariable and strong 
coupling nonlinear system and  presents chaotic behavior in some parameters and working 

conditions, main performance for the torque and speed of intermittent oscillations, system of 
irregular electromagnetic noise, etc. These irregular movements affect the stable operation of the 

system, how to eliminate the chaotic behavior of permanent magnet synchronous motor system has 
become the attention control subject.   

Mathematical Model of PMSM and Chaotic Indicator 

The dynamics of PMSM can be modeled, based on the d-q axis,   where di , qi  and   are the 

state variables, which represent currents and motor angular frequency, respectively, du
 and qu

 the 

direct- and quadrature-axis stator voltage components, respectively, J  the polar moment of inertia, 

LT
 the external load torque,  the viscous damping coefficient, 1R

 the stator winding resistance, 

dL
 and qL

 the directand quadrature-axis stator inductors, respectively, r
 the permanent magnet 

flux, and pn
 the number of pole-pairs. 
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By applying an affine transformation x x  and a time-scaling transformation t t  
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we only study the dynamic characteristics of the PMSM, namely, d qL L L 
 in the model. 

Thus, Eq 1 becomes 

 

1 1 3 2

2 2 3 1 3

3 2 3

d

q

L

x x x x u

x x x x x u

x x x T












   


    


  

                                                      (3) 

0d q Lu u T  
, this case can be thought of as that, after an operating period of the system, the 

external inputs are set to zero. Thus, Eq 3 becomes 
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When Runge-Kutta-Fehlberg integrator of variable time steps, is used to integrate the Eq 1, we 

obtain the chaotic attractor in Fig1, where initial condition (
, ,d qi i 

)=(20.0.01,-5) and 
(σ ,γ)=( 5.46,20).  

The Eq 5 as particular solutions of the system satisfy the following algebraic equations: 
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Fig 1. Strange attractor in PMSM 

Obviously, 
1, 1, 1eq eq eq

d qi i w         
 are the equilibrium points. At the point 

eq

qi , 
the Jacobian matrix of the linearized equations of the Eq 6 is written as 
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On the one hand, all the eigenvalues of the characteristic equations have negative real parts which 
display the system stable when μ<14.93, On the other hand there are always two eigenvalues with 

positive real parts as μ>14.93. Namely, the stability of the existing equilibrium changes from being 
stable to unstable as the parameter μ is varied to pass the critical value 14.93. Thus, we can claim 

that a Hopf bifurcation occurs at μ=14.93 . As a point to emphasize, one pair of purely imaginary 
eigenvalues and all other eigenvalues having negative real parts are sufficient  

 

Fig 2. The Lyapunov spectra 
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For the occurrence of a Hopf bifurcation at a certain critical parameter value. When the control 

forces put into controlling at any time ,it is stable at some equilibrium points, The Lyapunov spectra 
is shown in fig.2. 

Numerical Simulation and Analysis  

In order to confirm the effectiveness of the adopted method and the feasibility of the controller 

design,We make use of the MATLAB simulation to PMSM chaos system. We adopt four order 
Runge Kutta algorithm in the simulation process.  

For without loss of generality, this paper sets the system initial 

     1 2 30 (0), (0), (0) 0.1,0.1,0.1X x x x 
, parameters of the controller selected as β = 3 , η = 1/3 

and β = 4, η = 1/2, set references PMSM chaotic system parameters. Fig 3, Fig 4 show the response 
curve of PMSM chaotic system controller role in the design of this article, at t = 20s when added to 

the controller role. 
As it can be seen from Fig 3 and Fig 4, compared with the program of the literature, this article 

can be reached quickly without overshoot equilibrium point of the system. However, the program 
has less control parameters than the literature, and keeps convenient and flexible. Fig 3, Fig 4 also 

show that choosing different controller parameters can change the system overshoot and response 
time. The simulation results show that the controller not only has strong robustness and short 

response time, but also relatively few parameters of the controller . 

 

Figure 3 Control parameters
1

3,
2

    the system response curve. 

 

Figure 4 Control parameters 

1
4,

2
  

 the system response curve. 

Conclusion 

On the basis of combined controlling Lyapunov function method and finite time control theory, this 

paper presents a robust finite time stability controller, which can effectively control the movement of 
the permanent magnet synchronous motor chaos. On the basis of ensuring a strong robustness and 

short response time , compared with the previous controller, the parameters of the controller requires 
less and the algorithm is simple and easy to implement. Simulation results show the effectiveness of 

the controlled method. 
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