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Abstract: By applying the theory of inequality on time scales and the Lyapunov function method,
we obtain some sufficient conditions which guarantee the permanence and existence of a unique
uniformly asymptotically stable almost periodic sequence solution of a Lotka-Volterra system with
feedback controls.

1. Introduction

Recently, the dynamic behaviors of Lotka-Volterra predator-prey system have been widely
investigated (e.g.see[1-3] and the references cited therein) due to their application in many fields
such as physics, mechanics and the engineering technique fields. In such applications, many good
results concerned with the permanence, extinction and global asymptotic stability of periodic
solution or almost periodic solutions were obtained([4-6]).

However, in the previous works, one always deals with the existence of periodic solutions or
almost periodic solutions to differential equations . Up to now, few works has been done for Lotka-
Volterra predator-prey system on time scales which can unify continuous and discrete situations. In
[7], the authors propose the concept of almost periodic time scales and the definition of almost
periodic functions on almost periodic time scales. Based on these, our main aim in this paper is to
study the almost periodic solutions of the following Lotka-Volterra predator-prey system with
feedback controls on time scales

X (t) = (0, (t) — &, exp{x (1)} - &, exp{x, ()} + ¢, (t)u, ()],

X, (t) = 1, ([0, (t) + ay exp{x, (1)} - a,, exp{x, (1)} - c, (t)u, ()], (1.1)

up (1) = f,(t) — &, (u, (1) — d, (D) exp{x, ()3,

uy (t) = -, ()u, (t) + d, () exp{x, (1)}
where te T, T is an almost periodic time scale, x (t) is the prey population density and x,(t) is the
predator population density. b, (t),a,, (t) the intrinsic growth rate and density-dependent coefficient of
the prey, respectively; b, (t),a,, (t) the intrinsic growth rate and density-dependent coefficient of the
predator, respectively; a,,(t)the capturing rate of the predator and a,,(t) the rate of conversion of
nutrients into the reproduction of the predator. u,(t) and u,(t) are feedback controls. f,(t),r (t),
b (t),c;(t).e (t),d, (t) and a;(t).i, j =1,2are all bounded non-negative almost periodic functions on T.

For an almost periodic function f:T — R, we denote f" =sup f(t), f" =iln11; f (t) ,and we denote

teT
the solutions of system (1.1) by X (t) = (x,(t), %, (t), u, (t),u, (t))".
Throughout this paper, we assume that
(Hy) f,(t),r().b ()¢ (1), (t),d,(t)and a; (t) are all bounded non-negative almost periodic functions
on T such that
O<f"<ft)<f",0<b"<b(t)<b",0<c"<c(t)<c",0<r"<r(t)<r",

O<e"<e(t)<e",0<d"<d(t)<d" ,0<al <a;(t)<af.i j=12
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(H,) - —¢ &, —e] .- —rja, e R",
(Hy) ™" —r"a)) exp{x,.}>0,r,"ay, exp{x.} - b —r'cu, >0.

This paper is organized as follows: In Section 2, we introduce some notations and definitions and
state some preliminary results which are needed in later sections. In Section 3, we establish some

sufficient conditions for the permanence of (1.1). In Section 4, we establish some sufficient
conditions for the existence of a unique almost periodic solution of (1.1).

2. Preliminaries

Let T be a nonempty closed subset (time scale) of R. The forward and backward jump operators
o,p:T — Tand the graininess x : T — R are defined, respectively, by

ot)=inf{seT:s>t}, p(t)=sup{seT:s<t}, wp(t)=0c(t)-t.

A point teT is called left-dense ift>inf T and p(t)=t, left-scattered if p(t)<t, right-dense if
t<supT and o(t)=t, and right-scattered if o(t)>t. If T has a left-scattered maximum m, then
T" =T\{m}; otherwise T =T. If T has a right-scattered minimumm, then T, =T \{m}; otherwise
T, =T.

A function f : T — Ris right-dense continuous provided it is continuous at right-dense point in T
and its left-side limits exist at left-dense points in T. If f is continuous at each right-dense point
and each left-dense point, then f is said to be a continuous function on T.

Definition 2.1[7] Assume that f : T — R is a function and let t e T.Then we define f*(t) to be the
number (provided it exists) with the property that given any ¢ > 0,there is a neighborhood U of t
(i.e., U=(t-5,t+5)nTfor some & >0) such that

\[f(a(t))— f(s)]—fA(t)[a(t)—s]‘Sgla(t)—sl forall seU.

we call f*(t) the delta derivative of f at t. The function f is delta differentiable on T provided
f2(t) exists for all teT. The set of functions f : T — Rthat are delta differentiable and whose delta
derivative are rd-continuous functions is denoted by C;, =C;,(T)=C, (T, R.

Definition 2.2[7] A function p:T — Ris called regressive provided 1+ x(t)p(t) =0 for all teT*.
The set of all regressive and rd-continuous functions p:T—R will be denoted by
R =72R(T)=2(T,B . We define the set " =R (T,R={pe&R:1+ ut)p(t)>0,VteT}.

Definition 2.3[7] A time scale T is called an almost periodic time scale if
H::{TERI+TGT,VIET}¢{O}.

Throughout this paper, we restrict our discussion on almost periodic time scales.

Definition 2.4[7] Let T be an almost periodic time scale. A function f : T — K is said to be
almost periodic on T, if forany £>0,theset E(e, f)={r eIl f(t+7)- f(t)|<&,VteT} is
relatively dense inT, that is, for any ¢ >0, there exists a constant I(¢) > 0such that each interval of
length I(¢) contains at least one r e E(e, f)such that | f(t+7)— f(t)|<e,VteT. The set E(g, f) is
called the ¢ -translation set of f(t), z is called the & -translation number of f(t), and I(¢) is called
the inclusion of E(g, f).

Definition 2.5 System (1.1) is said to be permanent if there exist positive constants x.,x’,u..,u.,
which are independent of the solutions of the system, such that any positive solution X (t) of system

(1.1) satisfies
X, < Iimtinf x () <limsup x,(t) < x, u; < Iimtinf u (t) <limsupu,(t)<u;, i=12.
2t t—+0 ot t—+o0

Lemma 2.1[7] Let —ae®".
(i) If x*(t)<b-ax(t), then fort>t,, x(t)SX(tO)e(a)(t,to)+g(1—e(a)(t,to)). In particular, if a>0, we
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have limsup x(t) gE.
a

t—>+o0

(i) If x*(t)>b-ax(t), then for t>t,, x(t)> x(to)e(a)(t,to)+§(1—e(a) (t,t,)).In particular, if a>0, we

have liminf x(t) b
—>+0 a

Lemma 2.2[7] Suppose that there exists a Lyapunov function V (t,x,y) satisfying the following
conditions
() a(lx=y)<V(t,x,y)<b(x-y]|),where a,be £, L ={a<C(R",R"):a(0)=0 and a(x) is increasing
inx}
(i) [V (X, Y) =V (6%, Y,) KL X =X, | +|Y, - Y, |), where L>0 is a constant;
(iii) D'V (t,x,y) < —cV (t,x,y) where —-ce ", andc>0.
Moreover, if there exists a solution x(t) of x* = f(t,x) such that x(t)eS for allteT*, where ScD

is a compact set. Then there exists a unique uniformly asymptotically stable almost periodic
solution p(t) in S.

3. Permanence

In this section, we establish some permanence results for system (1.1). From Lemma 2.1, one can
obtain the following results.
Theorem 3.1 Assume that (H,), (H,) hold. Then every solution X (t) of system (1.1) satisfies
lim sup x, (t) < x;, lim sup x, (t) < x;, lim sup u, (t) <u;, lim sup u, (t) < u,,

t—+o0 t—+o0 t—>+o0 t—+o0

Where
MM MAM, * o m.m MM * mam M M x
~_ b +ntcu —ntay X = r, a, exp{x }-r"ay U= f] U = d,” exp{x,}
- m.m 12 T ma.m M1 T m 2 T m '
L ay, I a, € €;

Proof From the third equation of (1.1), we have
up (1) = f,(t) — ey (e)uy (t) — d, (D exp{x, ()} < £, —eluy(t).
It follows from the condition (i) of Lemma 2.1
limsupu,(t)<u,,

t—>+o0

the first equation of (1.1) we have
X (t) = 1, ()b, (t) — &y, (t) exp{x, (1)} — &, (t) exp{x, ()} + ¢, ()u, (t)]
<" + ey —n"ay - anx (b),
follows from Lemma 2.1 (i), that
lim sup x, (t) < x; .

t—>+o0

Then forany ¢ >0, there exists a t, e T such that x (t)<x +¢ forall t>t,.
While, from the second equation of (1.1), we get
XzA (t) = rz (t)[_bz (t) + a21 (t) eXp{X1 (t)} - a22 (t) eXp{Xz (t)}_ Cz (t)U2 (t)]
<r'a) exp{x +&}—raj, —ranx,(t).
Letting ¢ — 0, we get limsup x, (t) < x,. It follows from Lemma 2.1 (i), that

t—+o0

lim sup X, (t) < x;.

t—>+o0

From the last equation of (1.1), we arrive
U (t) = —&, (t)u, (t) + d, () exp{x, (1)} < d;" exp{x; + e} -7, (t) ,
then we have
lim sup u, (t) <u,.

t—>+0
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Similarly, we can get the following theorem.
Theorem 3.2 Assume that (H,) - (H,) hold, then every solution X (t) of system (1.1) satisfies

liminf x (t) > x_,lim inf x,(t) > x, ,lim inf u,(t) >u,_,liminf u,(t)>u, ,
t—>+0 t—>+0 t—+0 t—+0

where
MM * M *
=1In rlmb1m —h a3, exp{xz} u = flm _dl exp{xl}
X = M oM YL T M )
L ay, €
_rzM sz +1yay exp{xl*}—rz“" C;\A u; d; exp{x, }
X, =1In TR Uy =—————.
" a,, €;

Theorem 3.3 Assume that (H,) - (H,) hold. Then system (1.1) is permanent.

4. Existence of a unique almost periodic solution

We denote the set of all the solutions X (t) = (x, (t), X, (t),u, (t),u,(t)) of system (1.1) which satisfyin
X, <X (1) <X, %, <X, () <x,u. <u(t)<u;,u, <u,(t)<u,teT by Q. According to Theorem 3.3, we

have the following result.
Theorem 4.1 Assume that (H,) - (H,) hold. Then Q= &.

Theorem 4.2 Assume that (H,) - (H,) hold. And furthermore assume that
(H,) >0 and -© e 2", where ® =min{E,F,G,H}, and
E= dlm eXp{‘fL}_ rlM clM - rzM ail\g exp{g;}_ ,UM d1M exp{gf}[elM + dlM exp{fl*}]
— MM ag" expf2g,} - uM ™ ay exp{& Hay, exp{S,}+ay exp{¢ 3],
F =r"a); exp{, }—d;" exp{&}—r," ay exp{& } - ' 1, ay; exp{&}c," +ay, exp{g;}]
- pMd3™ exp{2&;} - " M aj; exp{&;Hay exp{& }+ay exp{&},
G=d"exp{& 3" — MMM — M [e) +d” exp{& Y,
H =2e; —d," exp{&,}— e, — 1" i)' [6)' +ay; exp{&; 3.
Then there exists a unique uniformly asymptotically stable almost periodic solution X (t) of system
(1.1), and X(t)eQ..
Proof From Theorem 4.1, there exists X (t) such that
X, <X () <X, %, <X, () <x,u. <u(t)<u;,u, <u,(t)<u,,teT.
We denote
A = max{] X, ||| X [}, A, =max{| x,. ||| %; [}, A, =max{lu.. |,|u; [}, A, = max{]u . |, u; [}.

. X () < ALX () 1< AL U (1) 1€ A u, (1) € A,
Define the norm
I X =sup|x(t)]|+sup|x,(t)|+sup|u,(t)|+sup|u,(t)], X (t) e R. 4.2)

teT t

In view of Theorem 4.1, we can suppose that
Xl = (xl(t)! X, (t)- ul(t)’ u, (t))T vY1 = (ml(t)! m, (t)’ n (t), n, (t))T ) (42)
be any two positive solutions of system (1.1).
Substituting (4.2) into the system of (1.1), we arrive to

(% —my)* (1) =, (t)[-a,, (D[exp{x (1)} - exp{m, (1)}]

— ay, (t)(exp{x, (1)} —exp{m, ()}) + ¢, (O)(u (1) - n, ()],
(%, =m,)* (t) =1, (t)[az (t)(exp{x, ()} — exp{m, (1)})

—ay, (t)[eXp{Xz (t)}_ eXp{mz (t)}] -G (t)[uz (t) -n, (t)]],
(U, =) (1) =&, (DU, (1) — n, O] - d, (O[exp{x, (1)} — exp{m, (1)},
(U, —N,)" (1) = =&, (t)[u, (1) — n, ()] + d (1) [exp{x, (1)} — exp{m, (t)}].

then,

(4.3)
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Considering Lyapunov function V (t, X,,Y,) on T* x Qx Q defined by
V(£ X, Y,) = (3 (8) = my(£)* + 0% (8) =M, (£)* + (uy (8) =y (1) + (u, (1) = m, (1) (4.4)
Obviously, the norm of (4.1) is equated with the following form of norm
10 =sup[ 06 ) + 06,0 + (@) + w0, @)
Then, | X, -Y, . and |l X, -Y, are equivalent. Then, there exist two constants C, >0,C, > 0such that
CllX, #Y) & IX,-Y,.<C, X,-Y,
Take a,b e C(R,R),a(x) =C2x*,b(x) =C2x*, thus the condition (i) of Lemma 2.2 is satisfied. In
addition,
V(X Y) =V (X, Y,)| = \[(Xi(t) —m, (1)) + (%, (1) = m, (1)) + (U, (1) = Ny (£)* + (U, (1) =y (£))°]
06 (1) = My (£)* + 0 (€) = m, ()7 + (uy (€) =y (£)* + (U () =1y (t))Z]\
<L () =, @ [+ my (€) = my (1) )+ (1 %, (1) =X, (1) [+ m, (€) = m, (1) )
+ (U (1) = Uy @O [+ (©) = 0 ) + (U, (€) = Uy () ]+ n, (8) =, (1) )]
SLAX #X, + Y, =Y, ).

where
L= 4maxi:1,2,3,4 A )

Xy = 06 (0), % (0), -, X ((2), Uy (1), U (1), . Uy ()
Y, = (M, (2), M, (0),..... my, (£), 1, (1), 1, (1), (1))
Thus the condition (ii) of Lemma 2.2 is also satisfied. Finally, we will prove the condition (iii) of
Lemma 2.2 is satisfied, calculating the right derivative D*V* of V along the solution of (4.4).
DV (1, X,,Yy) = [20% (1) = m, (1)) + 2e(0) (%, (1) = m, (1)) 1(x, (1) — m, (£))"
+[2(%, (t) = m, (1)) + £(1)(%, (1) = M, (1)) *1(x, (t) = m, (1))"

+[2(u () = 1y (8) + 20 (uy (1) = 1, (6) 1w, (6) =y (1) (4.5)
+[2(u, (1) =, (1) + 2(t)(U, (1) = N, (1) 1(u, (1) =, (1))
=V, +V, +V, +V,,

where
Vy =[20% (1) = my (£) + £(6) (% (2) = My (£) 10, (8) = my (£)*,
V, =[2(%, (t) = m, (1) + ()%, (1) = m, (£))*1(x, (t) = m, (1))",
V; =[2(uy (8) = ny (8) + £(t) (U, (1) =, () 1(u, (8) = n, (0)
V, =[2(u, (1) = n, (1)) + () (U, (8) = N, (£)) 1, (1) = n, (t))*.
By the mean value theorem, we get
exp{x, (1)} —exp{m, (t)} = exp{&, () }(x (t) — m, (1)), exp{x, (t)} —exp{m, (1)} = exp{S, (t)}(x, (t) - m, (1)),
where & (t),&,(t) lie between x, (t) and m,(t),x, (t) and m,(t) respectively. Then, (4.3) can be rewritten
as
(% —m,)* (t) = -1, (t)[a, (t) exp{&, (3% () —m, (1)) + &y, (1) exp{&, (OH(X, (1) — m, (1)) — ¢, () (U, (t) - n, V)],
(%, =m,)* (t) = =1, (t)[&,, (1) exp{&, (X, (t) —m, (1)) — &,y (£) exp{&, (D)%, () —m, (1) + ¢, ()(u, (t) =, ()],
(U, —ny)* (1) = —e, (E)(uy (1) — n, (1)) — d, () exp{&, (1) 3(x, (1) — m, V),
(U, =1,)* (t) = —&, (t)(u, (t) — N, (1)) + d, (t) exp{&, (1)}, (1) — M, (1))
According to Theorem 4.2 and (4.6), and combing with the inequality of 2|a|/b|<a®+a*then we
have

(4.6)
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V; =1, (0) (20 (1) - my (1)) — p(0)r (D[, () exp{& (% (1) - my (1)
+a, (t) eXp{fz (t)}(xz (t) -m, (t)) -G (t)(ul (t) -n (t))]})
x [ay, (t) exp{&, (1) }(x, (t) — my (1)) — ¢, () (u, (1) — Ny (1)) + &, () exp{&, (1) (X, (t) — m, ()]
<[ay; exp{&;}—r"ay exp{&, 3+ 4" "™ aj; exp{&; Hay exp{& DI0x, (1) —m, (1)°
+[6" e + pM M ay exp{& Hay, exp{g;}+a exp{& H10x (1) - m,(1)*
+(rMe" + MM e ) (U (1) - ny ()7,
V, =1, (t) (2(x,(t) - m, (t)) — u(t)r, (t)[az, (t) exp{S, (1) }(X, (t) —m, (1))
— 8y (1) xp{&, (D)%, (t) — M, (1)) + ¢, (D) (u, (1) — N, (1))])
x[a,, (t) exp{&, (1) }(X, (t) —m, (1) + ¢, ()(u, (t) — n, (1)) — 8y (t) exp{&, ()3 (X, (t) — my ()]
<[r;" az exp{& H+ 1" ;" az; exp{&, }(c;' +ay exp{& (%, (1) —m, (1))°
+ (" gy exp{& + w M ag)" exp{28, ) (% (1) - my (1)
+ M e (€ +ag exp{&, DU, (1) - n, (1)°,
= —(2(uy (t) = ny () — ()&, (1)U, () =y (1)) + d, (£) exp{& (OI(x, (1) — my (1))])
x[ey () (uy (1) —ny (1)) + d; () exp{&, (D)0 (8) —my (1))]
<[-d" exp{&, }+ 4" d;" exp{& el +d." exp{& (% (1) - m, (1))?
+[-d" exp{&, }+ )" (6" + ;" exp{& D, (1) -, (1))°,
V, == (2(u, () =, (1)) — p(O)[e, (t)(u, (1) = n, (1)) = d, (t) exp{&, (O}, (1) - m, (t)])
x[e, (t)(u, (1) —n, (1)) — d, (t) exp{&, (1) }(x, (t) —m, (t))]
<[-2¢] +d," exp{&;}+ 1" e 1(u, (1) - n, (1))°
+(dy" exp{& 3+ 1" d3™ exp{28; 1) (%, (1) — m, (1))°.
In view of (4.7) - (4.10), we obtain
DVA(L, X,,U,) =V, +V, +V, +V, <-OV(t, X,,Y,).
Therefore, condition (H,) is satisfied. Hence, according to Lemma 2.2, there exists a unique
uniformly asymptotically stable almost periodic solution X (t) of system (1.1), and X (t) e Q.

(4.7)

(4.8)

(4.9)

(4.10)
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