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Abstract. Due to the important effect of the transaction cost, risk, skewness and kurtosis to 
portfolio returns, the aim of this paper is to simulate the real transactions in stock market by 
considering the above factors. Firstly, two mean-semi-variance-skewness-kurtosis portfolio 
optimization models in open-loop and closed-loop are proposed by considering the transaction cost, 
return, risk, skewness and kurtosis. Secondly, the fuzzy programming approach is used to transform 
the two models into the corresponding single-objective programming models, and the genetic 
algorithm with adaptive scale adjustment is designed to solve them. Finally, the real data from the 
Shanghai Stock Exchange is given to illustrate the advantage of the proposed models and the 
efficiency of the designed algorithm. 

Introduction 

The aim of the portfolio management is how to distribute investment funding to maximize the 
expected return and minimize the risk. Markowitz (1952) originally proposed the M-V model for 
portfolio selection and optimization [1], which has opened the prelude to the theory of modern 
portfolio. Since then, many scholars have started to do related research on multi-period portfolio 
optimization problem in stock market under the Markowitz’ mean-variance theory framework, such 
as Giove(2006)[2], Gupta (2008)[3], Xia (2000)[4], Yu (2014)[5], etc. 

Most portfolio optimization models are proposed based on the probability theory, which 
characterize financial assets as random variables. However, in practice, the real financial market has 
many non-probabilistic factors affecting the returns of assets. With the continuous application of 
fuzzy set theory proposed by Zadeh (1965)[6], people began to realize that they can use fuzzy set 
theory to deal with the ambiguity in the securities market. So far, the study of the portfolio problem 
in the fuzzy environment has achieved considerable achievements. Östermark(1996) discussed about 
the dynamic portfolio problem with the risk-free asset and multi-risk asset using fuzzy decision 
theory and proposed a fuzzy control model[7]. Watada(1997) used fuzzy numbers to describe the 
investor's expectation for return rate and risk, and proposed a fuzzy portfolio optimization model 
based on fuzzy decision theory[8]. Qin (2017) employed random fuzzy variable to describe the 
stochastic return with ambiguous information, and designed random fuzzy simulation and 
simulation-based genetic algorithm to solve the proposed mean-absolute deviation portfolio 
optimization model [9]. Yue et al. (2014) proposed a new entropy function based on Minkowski’s 
measure as a new objective function and then established a novel fuzzy multi-objective weighted 
possibilistic higher order moment portfolio model [10]. 

The traditional portfolio models were generally followed by the Markowitz model using variance 
to quantify the risk of portfolio, but there are many scholars have doubted whether variance can 
quantify the risk appropriately. Swalm(1966) argued that there will be risky only when the 
investment return is negative, while the risk should be zero when the return is positive, so the risk 
should be measured in lower semi-variance[11]. Japanese scholars Konno and Yamazai (1991) 
proposed a mean-absolute deviation model, which use the mean absolute deviation to replace the 
variance [12]. Pınar (2007) used the downside-risk measure as risk measure to study the multi-period 
portfolio optimization problem [13]. 

Another expanding direction of the portfolio model is the relaxation of the assumptions, especially 
the breakthrough of the assumption that there is no friction in the market. For example, the liquidity 
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of open-end funds is very sensitive to the changes of transaction costs. If the transaction costs in the 
portfolio model are ignored, the effectiveness of the model will be greatly reduced. Magil and 
Constantinides (1976) first studied the impact of transaction costs on capital market equilibrium [14]. 
Eastham and Hastings (1988) used pulse control to study the impact of fixed costs on the portfolio 
and expanded the connotation of transaction costs [15].  

Though great progress has been made in the existing research on the portfolio problem, to our 
knowledge, very few literatures are available in applying the fuzzy set theory to deal with multi-
period portfolio optimization problem. Therefore, the purpose of this paper is to study the multi-
period portfolio optimization problem in fuzzy environment. In this paper, the fuzzy multi-period 
portfolio optimization models in open-loop and closed-loop, which consider the return, risk, 
transaction cost, skewness and kurtosis of portfolio, are proposed. And the return of portfolio is 
quantified by the possibilistic mean value of fuzzy variables, the risk is characterized by the 
possibilistic semi-variance, the skewness and the kurtosis are measured by the third order moment 
and the fourth order moment about the possibilistic mean value of a return distribution.  

The rest of this paper is organized as follows. In Section 2, we will give the details of the 
modeling process of the fuzzy mean-semi-variance-skewness-kurtosis models in open-loop and 
closed-loop. In Section 3, the fuzzy programming approach is used to transform the proposed models 
into the corresponding single-objective programming models, and the genetic algorithm with 
adaptive scale adjustment is designed to solve them. In section 4, a numerical example is given to 
illustrate the idea of our models and the effectiveness of the designed algorithm. Finally, some 
conclusions are given in Section 5.   

The Fuzzy Multi-Period Portfolio Optimization Models 
In this section, the problem representations and notations used in the following sections are 
introduced firstly. Then, we discuss the possibility return, the transaction cost, the cumulative risk, 
the skewness and kurtosis of the portfolio for the multi-period portfolio optimization problem in 
fuzzy environment. To express investors’ preferences more flexible, two fuzzy mean-semi-variance-
skewness-kurtosis models are formulated. One of them is an open-loop model and the other is a 
closed-loop model with dynamic feedback adjustment strategy. 

Problem Representations and Notations 

Assume that an investor allocates his initial wealth 𝑊𝑊1  among n risky assets at the beginning of 
period 1. The investor is allowed to reallocate his wealth at every beginning of each period and he 
can obtain the terminal wealth at the end of period T. The returns of assets are denoted as trapezoidal 
fuzzy numbers. To make it easier to follow our exposition, we first introduce the following 
notations.𝑥𝑥𝑖𝑖 ,𝑡𝑡  represents the investment proportion of risky asset 𝑖𝑖 at period 𝑡𝑡; 𝑥𝑥(𝑡𝑡) denotes the vector 
of the portfolio at period 𝑡𝑡; 𝑟𝑟𝑖𝑖 ,𝑡𝑡  represents the return of risky asset 𝑖𝑖 at period 𝑡𝑡; 𝑟𝑟(𝑡𝑡) represents the 
given minimum return level of the portfolio at period 𝑡𝑡; 𝑐𝑐𝑖𝑖 ,𝑡𝑡  denotes the unit transaction cost for risky 
asset 𝑖𝑖 at period 𝑡𝑡; 𝑐𝑐𝑡𝑡  represents the transaction cost of the portfolio 𝑥𝑥(𝑡𝑡) at period 𝑡𝑡. 
Maintaining the Integrity of the Specifications 
The fuzzy possibilistic return, the transaction costs, the terminal wealth, the cumulative risk, the 
cumulative possibilisticskewness and kurtosis of the portfolio are introduced. And we quantify return 
by the possibilistic mean value, risk by possibilistic semi-variance, skewness and kurtosis by the 
third order possibilistic moment and the fourth order possibilistic moment about the fuzzy return of 
the asset. 

Assume that the entire investment process is self-financing, that is, investors in the entire 
investment process do not inject new funds or withdraw funds. Based on the foregoing assumptions, 
𝑟𝑟𝑖𝑖 ,𝑡𝑡 = �𝑎𝑎𝑖𝑖 ,𝑡𝑡 ,𝑏𝑏𝑖𝑖 ,𝑡𝑡 ,𝛼𝛼𝑖𝑖 ,𝑡𝑡 ,𝛽𝛽𝑖𝑖 ,𝑡𝑡�(𝑖𝑖 = 1,2,⋯𝑛𝑛; 𝑡𝑡 = 1,2,⋯𝑇𝑇)  are trapezoidal fuzzy numbers. Then, the 
possibilistic mean value of portfolio 𝑥𝑥(𝑡𝑡) = �𝑥𝑥1,𝑡𝑡 , 𝑥𝑥2,𝑡𝑡 ,⋯ , 𝑥𝑥𝑛𝑛 ,𝑡𝑡�

′
 at period t can be expressed as 

Eq.1 𝐸𝐸�∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝑟𝑟𝑖𝑖 ,𝑡𝑡𝑛𝑛
𝑖𝑖=1 � = ∑ �𝑎𝑎𝑖𝑖,𝑡𝑡+𝑏𝑏𝑖𝑖,𝑡𝑡

2
+ 𝛽𝛽𝑖𝑖,𝑡𝑡−𝛼𝛼𝑖𝑖,𝑡𝑡

6
� 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝑛𝑛

𝑖𝑖=1                                            (1) 
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We also assume that the transaction cost 𝑐𝑐𝑡𝑡  is a V-shaped function of differences between the 
portfolio𝑥𝑥(𝑡𝑡) and the portfolio 𝑥𝑥(𝑡𝑡 − 1) .So the transaction cost of the portfolio 𝑥𝑥(𝑡𝑡) at period𝑡𝑡 can 
be expressed as 

Eq.2 𝑐𝑐𝑡𝑡 = ∑ 𝑐𝑐𝑖𝑖 ,𝑡𝑡𝑛𝑛
𝑖𝑖=1 �𝑥𝑥𝑖𝑖 ,𝑡𝑡 − 𝑥𝑥𝑖𝑖 ,𝑡𝑡−1�                                                                          (2) 

Then, the possibilistic mean value of the net return of the portfolio 𝑥𝑥(𝑡𝑡)  at period𝑡𝑡  can be 
expressed as 

Eq.3 𝐸𝐸(𝑅𝑅𝑡𝑡) = 𝐸𝐸�∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝑟𝑟𝑖𝑖 ,𝑡𝑡𝑛𝑛
𝑖𝑖=1 − 𝑐𝑐𝑡𝑡� = −∑ 𝑐𝑐𝑖𝑖 ,𝑡𝑡𝑛𝑛

𝑖𝑖=1 �𝑥𝑥𝑖𝑖 ,𝑡𝑡 − 𝑥𝑥𝑖𝑖 ,𝑡𝑡−1�                          (3) 

+��
𝑎𝑎𝑖𝑖 ,𝑡𝑡 + 𝑏𝑏𝑖𝑖 ,𝑡𝑡

2
+
𝛽𝛽𝑖𝑖 ,𝑡𝑡 − 𝛼𝛼𝑖𝑖 ,𝑡𝑡

6 � 𝑥𝑥𝑖𝑖 ,𝑡𝑡

𝑛𝑛

𝑖𝑖=1

 

So, the expected value of the terminal wealth at the end of period 𝑇𝑇 is 

Eq.4 𝑊𝑊𝑇𝑇 = 𝑊𝑊1 ∏ 𝐸𝐸(𝑅𝑅𝑡𝑡)𝑇𝑇−1
𝑡𝑡=1  = 𝑊𝑊1 ∏ �

∑ �𝑎𝑎𝑖𝑖,𝑡𝑡+𝑏𝑏𝑖𝑖,𝑡𝑡
2

+ 𝛽𝛽𝑖𝑖,𝑡𝑡−𝛼𝛼𝑖𝑖,𝑡𝑡
6

� 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝑛𝑛
𝑖𝑖=1

−∑ 𝑐𝑐𝑖𝑖 ,𝑡𝑡𝑛𝑛
𝑖𝑖=1 �𝑥𝑥𝑖𝑖 ,𝑡𝑡 − 𝑥𝑥𝑖𝑖 ,𝑡𝑡−1�

�𝑇𝑇−1
𝑡𝑡=1                (4) 

The following conclusion is shown in Saeidifar and Pasha (2009)[16]. The semi-variance of the 
return is expressed as 

Eq.5 𝑉𝑉𝑎𝑎𝑟𝑟−(𝑅𝑅𝑡𝑡) = �∑ �𝑏𝑏𝑖𝑖,𝑡𝑡−𝑎𝑎𝑖𝑖,𝑡𝑡
2

+ 𝛼𝛼𝑖𝑖,𝑡𝑡+𝛽𝛽𝑖𝑖,𝑡𝑡
6

� 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝑛𝑛
𝑖𝑖=1 �

2
+ 1

18
�∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝛼𝛼𝑖𝑖 ,𝑡𝑡𝑛𝑛

𝑖𝑖=1 �2
                  (5) 

Then, the cumulative risk of the portfolio over 𝑇𝑇 period can be computed as 

Eq.6 𝑆𝑆𝑉𝑉(𝑥𝑥) = ∑ ��∑ �𝑏𝑏𝑖𝑖,𝑡𝑡−𝑎𝑎𝑖𝑖,𝑡𝑡
2

+ 𝛼𝛼𝑖𝑖,𝑡𝑡+𝛽𝛽𝑖𝑖,𝑡𝑡
6

� 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝑛𝑛
𝑖𝑖=1 �

2
+ 1

18
�∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝛼𝛼𝑖𝑖 ,𝑡𝑡𝑛𝑛

𝑖𝑖=1 �2�𝑇𝑇
𝑡𝑡=1              (6) 

The cumulative possibilistic skewness of the 𝑇𝑇 period investment can be computed as 

Eq.7 𝑃𝑃𝑆𝑆(𝑥𝑥) = 1
24
∑

⎩
⎪
⎨

⎪
⎧

19
45
��∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝛽𝛽𝑖𝑖 ,𝑡𝑡𝑛𝑛

𝑖𝑖=1 �3 − �∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝛼𝛼𝑖𝑖,𝑡𝑡𝑛𝑛
𝑖𝑖=1 �3�

+ 1
3
��∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝛼𝛼𝑖𝑖,𝑡𝑡𝑛𝑛

𝑖𝑖=1 ��∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝛽𝛽𝑖𝑖 ,𝑡𝑡𝑛𝑛
𝑖𝑖=1 �2 − �∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝛽𝛽𝑖𝑖 ,𝑡𝑡𝑛𝑛

𝑖𝑖=1 ��∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝛼𝛼𝑖𝑖,𝑡𝑡𝑛𝑛
𝑖𝑖=1 �2�

+�∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡�𝑏𝑏𝑖𝑖,𝑡𝑡 − 𝑎𝑎𝑖𝑖 ,𝑡𝑡�𝑛𝑛
𝑖𝑖=1 � ��∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝛽𝛽𝑖𝑖 ,𝑡𝑡𝑛𝑛

𝑖𝑖=1 �2 − �∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝛼𝛼𝑖𝑖,𝑡𝑡𝑛𝑛
𝑖𝑖=1 �2� ⎭

⎪
⎬

⎪
⎫

𝑇𝑇
𝑡𝑡=1         (7) 

The cumulative possibilistic kurtosis of the 𝑇𝑇 period investment can be given as 

Eq.8 𝐾𝐾(𝑥𝑥) = 1
72
�∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝛼𝛼𝑖𝑖,𝑡𝑡𝛽𝛽𝑖𝑖 ,𝑡𝑡𝑛𝑛

𝑖𝑖=1 �2 + 3
8
�∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝑎𝑎𝑖𝑖 ,𝑡𝑡𝑏𝑏𝑖𝑖,𝑡𝑡𝑛𝑛

𝑖𝑖=1 �2 + 5
432

��∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝛽𝛽𝑖𝑖 ,𝑡𝑡𝑛𝑛
𝑖𝑖=1 �4 + �∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝛼𝛼𝑖𝑖,𝑡𝑡𝑛𝑛

𝑖𝑖=1 �4� 

+ 1
16
��∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝑎𝑎𝑖𝑖,𝑡𝑡𝑛𝑛

𝑖𝑖=1 �4 + �∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝑏𝑏𝑖𝑖,𝑡𝑡𝑛𝑛
𝑖𝑖=1 �4� − 1

18
�∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝛼𝛼𝑖𝑖,𝑡𝑡𝛽𝛽𝑖𝑖 ,𝑡𝑡𝑛𝑛

𝑖𝑖=1 ��∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡�𝑎𝑎𝑖𝑖,𝑡𝑡 − 𝑏𝑏𝑖𝑖 ,𝑡𝑡��𝛼𝛼𝑖𝑖,𝑡𝑡 + 𝛽𝛽𝑖𝑖 ,𝑡𝑡�𝑛𝑛
𝑖𝑖=1 � +

5
432

��∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝛽𝛽𝑖𝑖 ,𝑡𝑡𝑛𝑛
𝑖𝑖=1 �4 + �∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝛼𝛼𝑖𝑖,𝑡𝑡𝑛𝑛

𝑖𝑖=1 �4�        (8) 

The Fuzzy Multi-period Portfolio Optimization Model in Open-loop 

Assume that the objective of the investor wants to maximize the expected value of the terminal 
wealth, minimize the cumulative risk, maximize the cumulative skewness and minimize the 
cumulative kurtosis of the portfolio. Meanwhile, the investor also requires that the return at each 
period must be not less than the given minimum expected level 𝑟𝑟(𝑡𝑡) and the proportion of the 
investment allocated must meet a given boundary constraint. Thus, the following fuzzy multi-period 
portfolio optimization open-loop model (P1) is formulated. 
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Eq.9 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

𝑚𝑚𝑎𝑎𝑥𝑥 𝑊𝑊𝑇𝑇
𝑚𝑚𝑖𝑖𝑛𝑛 𝑆𝑆𝑉𝑉(𝑥𝑥)
𝑚𝑚𝑎𝑎𝑥𝑥 𝑃𝑃𝑆𝑆(𝑥𝑥)
𝑚𝑚𝑖𝑖𝑛𝑛 𝐾𝐾(𝑥𝑥)

𝑠𝑠. 𝑡𝑡.                                                                                                                         
∑ �𝑎𝑎𝑖𝑖,𝑡𝑡+𝑏𝑏𝑖𝑖,𝑡𝑡

2
+ 𝛽𝛽𝑖𝑖,𝑡𝑡−𝛼𝛼𝑖𝑖,𝑡𝑡

6
� 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝑛𝑛

𝑖𝑖=1 − ∑ 𝑐𝑐𝑖𝑖 ,𝑡𝑡𝑛𝑛
𝑖𝑖=1 �𝑥𝑥𝑖𝑖 ,𝑡𝑡 − 𝑥𝑥𝑖𝑖 ,𝑡𝑡−1�  ≥ 𝑟𝑟(𝑡𝑡)(𝑎𝑎)

∑ 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝑛𝑛
𝑖𝑖=1 = 1                                                                                             (𝑏𝑏)

𝑊𝑊𝑡𝑡+1 = 𝑊𝑊𝑡𝑡 �∑ �𝑎𝑎𝑖𝑖,𝑡𝑡+𝑏𝑏𝑖𝑖,𝑡𝑡
2

+ 𝛽𝛽𝑖𝑖 ,𝑡𝑡−𝛼𝛼𝑖𝑖,𝑡𝑡
6

� 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝑛𝑛
𝑖𝑖=1 − ∑ 𝑐𝑐𝑖𝑖 ,𝑡𝑡𝑛𝑛

𝑖𝑖=1 �𝑥𝑥𝑖𝑖 ,𝑡𝑡 − 𝑥𝑥𝑖𝑖 ,𝑡𝑡−1��
(𝑐𝑐)

 0 ≤ 𝑥𝑥𝑖𝑖 ,𝑡𝑡 ≤ 𝑢𝑢𝑖𝑖 ,𝑡𝑡 ,       𝑖𝑖 = 1,2,⋯ ,𝑛𝑛; 𝑡𝑡 = 1,2,⋯𝑇𝑇                              (𝑑𝑑)

�           (9) 

In the proposed model(P1), the constraint (9)(a) indicates that the portfolio return must be not less 
than the given minimum return level 𝑟𝑟(𝑡𝑡)  in each period; the constraint (9)(b) represents the 
investment proportion at period 𝑡𝑡 sum to one; the constraint (9)(c) denotes the wealth accumulation 
constraint; the constraint (9)(d) represents that the investment proportion of risky asset 𝑖𝑖 at period 𝑡𝑡, 
𝑥𝑥𝑖𝑖 ,𝑡𝑡  , must not exceed the upper bound 𝑢𝑢𝑖𝑖 ,𝑡𝑡 . For notational simplicity, we denote the feasible region 
of the model (P1) as𝑥𝑥 ∈ 𝐷𝐷1. 

The Fuzzy Multi-period Portfolio Optimization Closed-loop Model Based on Dynamic 
Feedback Adjustment Strategy 

Although the formulation of P1  is clear and easily, it ignores the influence of the historical 
information about returns of assets on portfolio decision-making. However, in many cases, the 
process of adjustment on portfolio is a closed-loop structure. In other words, the adjustment on 
portfolio depends on its historical information. In order to further illustrate the characteristics of 
closed-loop structure in the process of fuzzy multi-period portfolio optimization, the open-loop 
model (P1) is extended to the corresponding closed-loop model (P2). 

In order to show that the multi-period investment decision-making process is a feedback control 
system, the adjustment sequence of the portfolio will be constructed by using the dynamic feedback 
adjustment strategy. Assume that the adjustment strategies of portfolios are affine functions about 
their one-period backwards return deviation [18]. In other words, the adjustment amount of the 
portfolio at period t depends on the return deviation of the portfolio at period 𝑡𝑡 − 1. Under this 
hypothesis, the dynamic feedback adjustment strategy can be expressed as the following causal 
function: 

Eq.10 ∆𝑥𝑥�(𝑡𝑡) = ∆𝑥𝑥(𝑡𝑡) + Θ(𝑡𝑡 − 1)[𝑟𝑟(𝑡𝑡 − 1) − 𝑟𝑟(𝑡𝑡 − 1)]                               (10) 

Where ∆𝑥𝑥�(𝑡𝑡) = (∆𝑥𝑥�1,𝑡𝑡 ,∆𝑥𝑥�2,𝑡𝑡 ,⋯ ,∆𝑥𝑥�𝑛𝑛 ,𝑡𝑡)′  denotes the dynamic feedback adjustment proportion of 
the portfolio at period 𝑡𝑡; ∆𝑥𝑥(𝑡𝑡) = (∆𝑥𝑥1,𝑡𝑡 ,∆𝑥𝑥2,𝑡𝑡 ,⋯ ,∆𝑥𝑥𝑛𝑛 ,𝑡𝑡)′  are the nominal adjustment amount of the 
portfolio at period𝑡𝑡, and ∆𝑥𝑥�(0) = ∆𝑥𝑥(0) = (∆𝑥𝑥1,0,∆𝑥𝑥2,0,⋯ ,∆𝑥𝑥𝑛𝑛 ,0)′  represents the initial adjustment 
amount. Assume thatΘ(𝑡𝑡) = �𝜃𝜃𝑖𝑖𝑖𝑖 (𝑡𝑡)�

𝑛𝑛×𝑛𝑛  is the market relation matrix at period 𝑡𝑡 . Let 𝑟𝑟(𝑡𝑡) =
(𝑟𝑟1,𝑡𝑡 , 𝑟𝑟2,𝑡𝑡 ,⋯ , 𝑟𝑟𝑛𝑛 ,𝑡𝑡)′  represents the vector of the return of the portfolio at period 𝑡𝑡 , and 𝑟𝑟(𝑡𝑡) =
(𝑟𝑟1,𝑡𝑡 , 𝑟𝑟2,𝑡𝑡 ,⋯ , 𝑟𝑟𝑛𝑛 ,𝑡𝑡)′  represents the vector of the expected level of the return of the portfolio at period𝑡𝑡. 

So, the crisp form investment proportion of the portfolio at period t can be expressed as 

Eq.11 𝑥𝑥(𝑡𝑡) = 𝐸𝐸�𝑥𝑥�(𝑡𝑡)� = 𝐸𝐸[𝑥𝑥�(𝑡𝑡 − 1) + ∆𝑥𝑥�(𝑡𝑡)]                                            (11) 

= 𝐸𝐸[𝑥𝑥�(𝑡𝑡 − 1)] + ∆𝑥𝑥(𝑡𝑡) + Θ(𝑡𝑡 − 1)𝐸𝐸[𝑟𝑟(𝑡𝑡 − 1) − 𝑟𝑟(𝑡𝑡 − 1)] 

= 𝑥𝑥(0) + �{∆𝑥𝑥(𝑘𝑘) + Θ(𝑘𝑘 − 1)𝐸𝐸[𝑟𝑟(𝑘𝑘 − 1) − 𝑟𝑟(𝑘𝑘 − 1)]}
𝑡𝑡

𝑘𝑘=1
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Then, the investment proportion of asset 𝑖𝑖 at period 𝑡𝑡 can be expressed as 

Eq.12 𝑥𝑥𝑖𝑖 ,𝑡𝑡 = 𝑥𝑥𝑖𝑖 ,0 + ∑ �∆𝑥𝑥𝑖𝑖 ,𝑘𝑘 + ∑ �𝜃𝜃𝑖𝑖𝑖𝑖 (𝑘𝑘 − 1)𝐸𝐸�𝑟𝑟𝑖𝑖 ,𝑘𝑘−1 − 𝑟𝑟𝑖𝑖 ,𝑘𝑘−1��𝑛𝑛
𝑖𝑖=1 �𝑡𝑡

𝑘𝑘=1            (12) 

Moreover, the transaction costs of the portfolio at period t can be expressed as 

Eq.13 𝑐𝑐𝑡𝑡 = ∑ 𝑐𝑐𝑖𝑖 ,𝑡𝑡𝑛𝑛
𝑖𝑖=1 �𝑥𝑥𝑖𝑖 ,𝑡𝑡 − 𝑥𝑥𝑖𝑖 ,𝑡𝑡−1� = ∑ 𝑐𝑐𝑖𝑖 ,𝑡𝑡 �𝐸𝐸�∆𝑥𝑥�𝑖𝑖 ,𝑡𝑡��𝑛𝑛

𝑖𝑖=1                                   (13) 

= �𝑐𝑐𝑖𝑖 ,𝑡𝑡 �∆𝑥𝑥𝑖𝑖 ,𝑡𝑡 + ��𝜃𝜃𝑖𝑖𝑖𝑖 (𝑡𝑡 − 1)𝐸𝐸�𝑟𝑟𝑖𝑖 ,𝑡𝑡−1 − 𝑟𝑟𝑖𝑖 ,𝑡𝑡−1��
𝑛𝑛

𝑖𝑖=1

�
𝑛𝑛

𝑖𝑖=1

 

The terminal wealth at the end of period 𝑇𝑇 is 

Eq.14 𝑊𝑊𝑇𝑇+1 = 𝑊𝑊1 ∏ 𝐸𝐸(𝑅𝑅𝑡𝑡)𝑇𝑇
𝑡𝑡=1                                                            (14) 

= 𝑊𝑊1 �

⎣
⎢
⎢
⎢
⎢
⎡��

𝑎𝑎𝑖𝑖 ,𝑡𝑡 + 𝑏𝑏𝑖𝑖 ,𝑡𝑡
2

+
𝛽𝛽𝑖𝑖 ,𝑡𝑡 − 𝛼𝛼𝑖𝑖 ,𝑡𝑡

6 � 𝑥𝑥𝑖𝑖 ,𝑡𝑡

𝑛𝑛

𝑖𝑖=1

−�𝑐𝑐𝑖𝑖 ,𝑡𝑡 �𝐸𝐸�∆𝑥𝑥�𝑖𝑖 ,𝑡𝑡��
𝑛𝑛

𝑖𝑖=1 ⎦
⎥
⎥
⎥
⎥
⎤

𝑇𝑇

𝑡𝑡=1

 

For the risk, skewness and kurtosis of the portfolio, they are not related to the subjective forecast 
of the investor, since they are only related to the characteristics of the return of the portfolio. 
Therefore, the formulas of the cumulative risk, the cumulative skewness and kurtosis under closed-
loop decision-making are the same as that in open-loop decision-making. 

Assume that the investor's decision-making criteria are exactly the same as the model (P1). At the 
same time, it is assumed that the investor takes into account the impact of the deviation between the 
past portfolio return and the expected return on the current investment adjustment proportion. Then, 
the following model (P2) for fuzzy multi-period portfolio optimization in closed-loop is established. 

Eq.15 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

max 𝑊𝑊𝑇𝑇+1
min 𝑆𝑆𝑉𝑉(𝑥𝑥)

   max  𝑃𝑃𝑆𝑆(𝑥𝑥)
min 𝐾𝐾(𝑥𝑥)

𝑠𝑠. 𝑡𝑡.                                                                                                                                        
∑ �𝑎𝑎𝑖𝑖,𝑡𝑡+𝑏𝑏𝑖𝑖,𝑡𝑡

2
+ 𝛽𝛽𝑖𝑖 ,𝑡𝑡−𝛼𝛼𝑖𝑖,𝑡𝑡

6
� 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝑛𝑛

𝑖𝑖=1 − ∑ 𝑐𝑐𝑖𝑖 ,𝑡𝑡𝑛𝑛
𝑖𝑖=1 �𝐸𝐸�∆𝑥𝑥�𝑖𝑖 ,𝑡𝑡��  ≥ 𝑟𝑟(𝑡𝑡)(𝑎𝑎)

∑ �∆𝑥𝑥𝑖𝑖 ,𝑡𝑡 + ∑ �𝜃𝜃𝑖𝑖𝑖𝑖 (𝑡𝑡 − 1) �𝑎𝑎𝑖𝑖 ,𝑡𝑡−1+𝑏𝑏𝑖𝑖 ,𝑡𝑡−1

2
+ 𝛽𝛽𝑖𝑖 ,𝑡𝑡−1−𝛼𝛼𝑖𝑖 ,𝑡𝑡−1

6
− 𝑟𝑟𝑖𝑖 ,𝑡𝑡−1��𝑛𝑛

𝑖𝑖=1 �𝑛𝑛
𝑖𝑖=1 = 0

(𝑏𝑏)
1′Θ(𝑡𝑡 − 1) = 0                                                                                       (𝑐𝑐)

     0 ≤ 𝑥𝑥𝑖𝑖 ,𝑡𝑡 ≤ 𝑢𝑢𝑖𝑖 ,𝑡𝑡 ,       𝑖𝑖 = 1,2,⋯ ,𝑛𝑛; 𝑡𝑡 = 1,2,⋯𝑇𝑇                                (𝑑𝑑)

�  (15) 

In the proposed model P2, the constraint (15)(a) indicates that the return must be not less than the 
given minimum return level𝑟𝑟(𝑡𝑡) in each period; the constraint (15)(b) represents the self-financing 
constraint; the constraint (15)(c) shows the relationship among elements in the market relation matrix 
at period 𝑡𝑡; the constraint (15)(d) represents that the investment proportion of risky asset 𝑖𝑖 at period 
𝑡𝑡 ,𝑥𝑥𝑖𝑖 ,𝑡𝑡 , must not exceed the upper bound 𝑢𝑢𝑖𝑖 ,𝑡𝑡 . For notational simplicity, we denote the feasible region 
of the model P2 as𝑥𝑥 ∈ 𝐷𝐷2 . 

Solution Algorithm  
The Fuzzy Programming Approach 

Since the models P1and P2are both multi-objective programming models. The incommensurability 
between the objectives makes it not easy to find the optimal solution for the multi-objective decision-
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making problem. In order to solve this problem, the fuzzy programming approach proposed by 
Zimmermann (1978) will be used to transform them into single objective models [17]. 

For model P1, we can obtain its corresponding single objective model P1
′ .  

Eq.16 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝑚𝑚𝑎𝑎𝑥𝑥 𝜆𝜆
𝑠𝑠. 𝑡𝑡.  𝜆𝜆 ≤ 𝑊𝑊𝑇𝑇+1−𝑊𝑊𝑇𝑇+1

−

𝑊𝑊𝑇𝑇+1
+−𝑊𝑊𝑇𝑇+1

−

         𝜆𝜆 ≤ 𝑆𝑆𝑉𝑉−(𝑥𝑥)−𝑆𝑆𝑉𝑉(𝑥𝑥)
𝑆𝑆𝑉𝑉−(𝑥𝑥)−𝑆𝑆𝑉𝑉+(𝑥𝑥)

 𝜆𝜆 ≤ 𝑃𝑃𝑆𝑆(𝑥𝑥)−𝑃𝑃𝑆𝑆−(𝑥𝑥)
𝑃𝑃𝑆𝑆+(𝑥𝑥)−𝑃𝑃𝑆𝑆−(𝑥𝑥)

 𝜆𝜆 ≤ 𝐾𝐾−(𝑥𝑥)−𝐾𝐾(𝑥𝑥)
𝐾𝐾−(𝑥𝑥)−𝐾𝐾+(𝑥𝑥)
𝑥𝑥𝑥𝑥𝐷𝐷1

�                                                            (16) 

where 𝑊𝑊𝑇𝑇+1
+ = max

𝑥𝑥𝑥𝑥𝐷𝐷1
𝑊𝑊𝑇𝑇+1  and 𝑊𝑊𝑇𝑇+1

− = min
𝑥𝑥𝑥𝑥𝐷𝐷1

𝑊𝑊𝑇𝑇+1 , 𝑆𝑆𝑉𝑉+(𝑥𝑥) = min
𝑥𝑥𝑥𝑥𝐷𝐷1

𝑆𝑆𝑉𝑉(𝑥𝑥)  and 𝑆𝑆𝑉𝑉−(𝑥𝑥) =

max
𝑥𝑥𝑥𝑥𝐷𝐷1

𝑆𝑆𝑉𝑉(𝑥𝑥) , 𝑃𝑃𝑆𝑆+(𝑥𝑥) = max
𝑥𝑥𝑥𝑥𝐷𝐷1

𝑃𝑃𝑆𝑆(𝑥𝑥)  and 𝑃𝑃𝑆𝑆−(𝑥𝑥) = min
𝑥𝑥𝑥𝑥𝐷𝐷1

𝑃𝑃𝑆𝑆(𝑥𝑥) , 𝐾𝐾+(𝑥𝑥) = min
𝑥𝑥𝑥𝑥𝐷𝐷1

𝐾𝐾(𝑥𝑥)  and 𝐾𝐾−(𝑥𝑥) =

max
𝑥𝑥𝑥𝑥𝐷𝐷1

𝐾𝐾(𝑥𝑥) represent the ideal solution and anti-ideal solution of 𝑊𝑊𝑇𝑇+1 , 𝑆𝑆𝑉𝑉(𝑥𝑥),𝑃𝑃𝑆𝑆(𝑥𝑥) and 𝐾𝐾(𝑥𝑥) , 

respectively. 
By using the same approach above, the model P2can also be transformed into corresponding single 

objective optimization model P2
′ . 

The Genetic Algorithm 

For the single objective optimization models 𝑃𝑃1
′  and𝑃𝑃2

′  , it is usually difficult to solve them 
effectively by using traditional optimization algorithms. In consequence, the following genetic 
algorithm with adaptive scale adjustment is designed. In the new algorithm, the feasibility of each 
individual in the evolution process is judged by the constraint processing mechanism based on the 
feasible solution. The procedure of the designed genetic algorithm can be summarized as follows: 

Step1. Input the population size pop_size, the crossover probability 𝑃𝑃𝑐𝑐 and the mutation 
probability𝑃𝑃𝑚𝑚 ; 

Step2.Initialize the randomly generated solutions and code them in real numbers, then express 
them as the corresponding chromosomes; 

Step3. Calculate the fitness function values for all chromosomes and perform scale transformation 
operations on them; 

Step4. According to the fitness function values after the scale adjustment in Step3, perform the 
selection operation by the roulette strategy;  

Step5. Update the chromosomes by crossover and mutation operations; 
Step6. Make judgments about the termination condition. If the genetic calculation achieves the 

maximum allowable algebras or the optimal individuals of successive generations has not improved, 
he best results will be output and the calculation will be finished, otherwise it will be transferred to 
Step3. 

Numerical Example 
In this section,in order to illustrate the idea of the proposed models and the advantage of our 
designed algorithm, a numerical example based on real world data from Shanghai Stock Exchange 
will be given. Assume that there are six risky assets for an investor to choose, and he could reallocate 
his wealth at the beginning of each period. We extracted the historical data from the weekly closing 
prices of the six risky assets from Jan.2009 to Jan.2016, and set every four years as an observation 
period to analyze these data. Then, the trapezoidal probability distribution of each risky asset will be 
estimated by using the simple estimation method proposed by Vercher et al. (2007)[19]. The details 
can be seen in Table 1. 
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Table1. The trapezoidal fuzzy return for each asset 

Asset i t=1 t=2 
1 (1.0346,1.1118,0.2800,0.7781) (1.0313,1.1008,0.2804,0.7901) 
2 (1.0388,1.0972,0.3036,0.3860) (1.0390,1.1072,0.3126,0.3891) 
3 (1.0241,1.0838,0.2057,0.3573) (1.0260,1.0853,0.2018,0.3892) 
4 (1.0159,1.0852,0.3541,0.3737) (1.0170,1.0886,0.3556,0.3786) 
5 (1.0132,1.0735,0.2951,0.3219) (1.0118, 1.0782, 0.3017,0.3693) 
6 (1.0094,1.0729,0.2791,0.3004) (1.0082,1.0712, 0.3004,0.3528) 

 
Suppose that an investor holds 10000 yuan at the beginning of period 1, that is, 𝑊𝑊1 = 10000. And 

the transaction costs of assets at each period are identical, i.e., 𝑐𝑐𝑖𝑖 ,𝑡𝑡 = 0.003  , for all 
𝑖𝑖 = 1,2,3,4,5,6; 𝑡𝑡 = 1,2. Let the minimum expected return of the portfolio at the 𝑡𝑡th period, (𝑡𝑡) =
0.08(𝑡𝑡 = 1,2) , and the investment proportion 𝑥𝑥𝑖𝑖 ,𝑡𝑡𝑥𝑥[0,0.5](𝑖𝑖 = 1,2,3,4,5,6; 𝑡𝑡 = 1,2). To solve the 
proposed models with the designed genetic algorithm, the population size pop_size and the 
maximum iteration number are assumed to be 30 and 1000, the crossover probability P𝑐𝑐  is supposed 
to be 0.8 and the mutation probability P𝑚𝑚  is supposed to be 0.01. 

Assume that an investor makes his investment decisions by the portfolio optimization model P1. 
First, we transform P1 into corresponding single-objective programming model P1

′ . Then, running 
the designed genetic algorithm with 1000 generations, the portfolio strategies can be obtained and 
listed in Table 2. 

Table 2. The portfolio strategies of the proposed model P1 

Asset i t=1 t=2 The Terminal Wealth 
1 0.2731                 0.2505           

14151 

2 0.0885 0.1637     
3 0.1981 0.1020 
4 0.1147 0.0832 
5 0.1507 0.2449    
6 0.1750 0.1557 

 
As can be seen from Table 2, if an investor makes his investment decisions by the model P1, he 

will obtain the terminal wealth of 14151. 
Suppose that an investor makes his investment decisions by the portfolio optimization model P2. 

Similar to the solving method of the model P1, P2is transformed into corresponding single-objective 
programming model P2

′  And we assume that the expected return for the investor at period 1 is 
𝑅𝑅�(1) = (1.0732,1.068, 1.0792,1.0538,1.0608,1.0521). The initial investment proportion 𝑥𝑥(0) is 
set as𝑥𝑥(0) = (0.166,0.166, 0.167,0.167,0.167,0.167) . The nominal adjustments proportion of 
every period investment are ∆�̅�𝑥(1) = (0.1672,−0.1672,0.25,−0.25,0.5,−0.5) and ∆�̅�𝑥(2) =
(0.0002,−0.0001,0.0084,−0.0086,0.0093, 0.0092). So, the following market relation matric can 
be obtained. 

Θ(1) =

⎝

⎜⎜
⎛

−0.0019 −0.0013 −0.0003
0.0005 0.0004 0.0002

 −0.0985 −0.0621 −0.0521
0.0999   0.0731 0.0219

 −0.0031 −0.0028 −0.0019
 0.0931 0.0329 0.0352

   0.0002 0 0
  0.0001 0 0

  −0.0163 0 0
   0.0165 0 0

  −0.0001 0 0
0.0010 0 0⎠

⎟⎟
⎞

                               

Then, solve the model P2
′  by using the designed genetic algorithm, and obtain the corresponding 

portfolio strategy as shown in Table 3 below. 
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Table 3. The portfolio strategies of the proposed model P2 

Asset i t=1 t=2 The Terminal Wealth 
1 0.2522 0.2556 

14237 

2 0.2563 0.1888 
3 0.0230 0.1533 
4 0.1575 0.1744 
5 0.1687 0.1987 
6 0.1423 0.0292 

 
From Table 2 and Table 3, we can find that the terminal wealth based on the models P1 and P2 are 

14151 and 14237, respectively. In others words, the model P2 performs better than P1. Therefore, the 
relatively effective investment strategy is as follows:  

The investor should allocate 25.22%, 25.63%, 2.3%, 15.75%, 16.87% and 14.23% of his initial 
wealth at the beginning of period 1 in risky assets 1, 2, 3, 4, 5 and 6, respectively. And the investor 
should invest 25.56%, 18.88%, 15.33%, 17.44%, 19.87% and 2.92% of the wealth at the end of 
period 1 in risky assets 1, 2, 3, 4, 5 and 6, respectively. At the end of period 2, the terminal wealth 
obtained by the investor is 14237. 

Conclusion 

In this paper, considering the return, transaction cost, risk, skewness and kurtosis of portfolio, the 
fuzzy multi-period portfolio optimization problem is studied. First, the fuzzy mean-semi-variance-
skewness-kurtosis model in open-loop is proposed. Second, a new fuzzy multi-period portfolio 
optimization model in closed-loop is constructed by using the dynamic feedback strategy. Since the 
proposed models are multi-objective nonlinear programming models, the fuzzy programming 
approach is used to convert them into corresponding single objective programming models. Then, a 
genetic algorithm is designed to solve them. To prove the practicability of the proposed models and 
the effectiveness of the algorithm, a numerical example is given. The results show that the model 
based on dynamic feedback strategy performs better than the general model proposed. In other words, 
the deviation between the actual return and the expected return should be taken into account when 
investors make decisions in the stock market.  

For the future research in the stock market, the fuzzy multi-period portfolio optimization model in 
closed-loop will be applied to other asset allocation problems. Asset returns can also be considered 
as random fuzzy variables. Furthermore, the efficient solution method of multi-objective model will 
help us deal with more complicated problems. 
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