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Abstract. 

Introduction 

A new distance metric between interval-valued fuzzy sets is proposed. And based on this 
metric, we analysis and compare the structures of four special interval-valued fuzzy metric spaces, 
which are induced by four well-known residual implication operations. It was proved that the 
interval-valued fuzzy metric spaces induced by Lucasiewicz implication and Goguen implication 
are more suitable for interval-valued fuzzy reasoning. 

Let M be an inference mechanism, and ,A B the input and the output of the inference mechanism M
respectively. If small disturbance of input A without causing large changes of output B in inference 
process, then we say that the inference mechanism M has a good robustness. Researchers in 
different areas have different answers on the concepts of disturbance. Therefore, various related 
notions such as the largest perturbation, the average perturbation, δ-equalities, δ-sensitivity, largest 
δ-sensitivity, average δ-sensitivity and so on were proposed. The largest perturbation and the 
average perturbation of fuzzy sets were proposed and the perturbation of several fuzzy reasoning 
systems were discussed in [16]. Cai [1] discussed the robustness of fuzzy inference using 
δ-equalities of connectives and fuzzy implication operators. Literature [7, 9] proposed concepts of 
δ-sensitivity, largest δ-sensitivity and average δ-sensitivity of fuzzy connectives, and discussed the 
robustness of fuzzy reasoning. By comparing and analyzing these concepts, we notice that these 
concepts are based on different distance metrics. It is well known that fuzzy connectives determine 
the internal structure of a fuzzy logic system. However, the construction of distance metrics does 
not involve fuzzy connectives in previous works. Taking this into account, Dai et al. [3] and Jin etal. 
[4] proposed the notion of logic similarity degree between fuzzy sets based on fuzzy connectives, 
and discuss robustness of fuzzy reasoning. Wang et al. [15] proposed a new distance metric based 
on residuated implication and conjunction connective, and discussed the robustness of full 
implication triple I inference method. Then Duan [5] studied the structures of four specific logic 
metric. 

However, there are some limitations when we deal with imprecise information using fuzzy sets. 
Therefore, interval-valued fuzzy set was introduced by Zadeh [17], which can not only effectively 
reduce the loss of fuzzy information but also reflect the vagueness and uncertainty in information 
processing. And then many researchers have studied this topic and extended approximate inference 
to the case of interval-valued fuzzy sets. Li et al. [8] extended CRI method to the case of 
interval-valued fuzzy set and discussed the robustness of interval-valued CRI method. Luo et al. [11, 
12] extended triple I method and reverse triple I method to the case of interval-valued fuzzy sets 
and studied their robustness respectively. These researches of robustness of interval-valued fuzzy 
reasoning methods are based on moore metric.  

However, it is easy to lose information when we use moore metric to study interval-valued fuzzy 
inference. For example, suppose ( )SI X is the class of all interval-valued fuzzy subsets of 
non-empty sets X . Let 1 2 10{ , ,..., }X x x x= , for ,A B and ( )C SI X∈ , ( ) [1,1](1 10)iA x i= ≤ ≤ , 

( ) [1,1](1 9)iB x i= ≤ ≤  , 10( ) [1,1]B x = and ( ) [0,0](1 10)iC x i= ≤ ≤ . If we use the moore metric, 
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then we obtain ( , ) max {max {| ( ) ( ) |, | ( ) ( ) |}} 1i l i l i r i r id A B A x B x A x B x= − − =  and 
( , ) max {max {| ( ) ( ) |, | ( ) ( ) |}} 1i l i l i r i r id A C A x C x A x C x= − − = . Obviously, this result is not 

reasonable. And because the behavior of a fuzzy logic system is mainly determined by its fuzzy 
connectives and fuzzy implication operators, based on this point, we propose a new distance metric 
of interval-valued fuzzy sets based on left-continuous t-norm and its residual implication. We 
analyze and compare the structures of four specific interval-valued fuzzy metric spaces.  

The remaining part is organized as the follows. Section 2 review some concepts needed for the 
paper. In Section 3, a new distance between interval-valued fuzzy sets based on left-continuous 
t-norm and its resituated implication is proposed, and four interval-valued fuzzy metric spaces 

( )( , )SI X d are given. In Section 4, four interval-valued fuzzy metric spaces are study. The final 
Section includes our conclusions.  

Preliminaries 
In this section, we review some concepts that will be required for our following work. Let 

{[ , ] | , , [0,1]}S I x y x y x y= ≤ ∈ . An ordering on SI as [ , ] [ , ]a b c d≤ if a c≤ and b d≤ is called 
component-wise order or Kulisch-Miranker order [2]. It is easy to verify that the ordering just 
defined is a partially ordering on SI . Furthermore, take[ , ] [ , ] [ , ]a b c d a b∧ = iff[ , ] [ , ]a b c d≤ and 
[ , ] [ , ] [ , ]a b c d c d∨ = iff [ , ] [ , ]a b c d≤ . In this paper, let 1 2 10{ , ,..., }X x x x=  be non-empty sets, 

( )SI X denote interval-valued fuzzy subsets of non-empty sets X , for  1 , ( ) ( )ii n A x SI X≤ ≤ ∈  
( ( )iA x denoted by [ ( ), ( )]l i r iA x A x ). cA is complement of interval-valued A , where 

[1 ,1 ]c
r lA A A= − − . 

Definition 2.1 ([6]) A function 2: [0,1] [0,1]T → is called a triangular norm (t-norm) if it 
commutative, associative, non-decreasing in each argument and ( ,1)T x x=  for all [0,1]a∈ . 

Definition 2.2 ([13]) Let L be a bounded lattice.T is a t-norm on L If there exists another operator 
2:TR L L→ such that ( ),T a b c≤ if and only if ( ),Ta R b c≤ ; for all , ,a b c L∈ ; then TR is called 

the residuum of T , ( ), TT R is called a residuated pair on L .  

Example 2.1 ([14]) Defined on the unit interval[0,1] that: 

(1) Minimum t-norm and its residuum, deloG   implication: 

       ( , )GT a b a b= ∧ ,          
1, ,

( , )
, .G

ifa b
R a b

b ifa b
≤

=  >                              
 

(2) Nilpotent minimum t-norm and its residuum, 0R implication: 

       0

, 1,
( , )

0, .
a b ifa b

T a b
otherwise
∧ + >

= 


         0

1, ,
( , )

(1 ) , .
ifa b

R a b
a b otherwise
≤

=  − ∨            
 

(3) Product t-norm and its residuum, Goguen implication:  

       
0
( , ) ,GT a b ab=               

0

1, ,
( , )

, .G

ifa b
R a b b ifa b

a

≤
= 

>                          

 

(4) zLucasiewic  t-norm and its residuum, zLucasiewic  implication: 

       ( , ) 0 ( 1),LT a b a b= ∨ + −        ( , ) 1 (1 ).LR a b a b= ∧ − +                        
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Definition 2.3 ([10]) A real function ]10[)()(: ，→× XFXFd  is called a distance, if d satisfied 
the following properties: 

(D1): ),(),( ABdBAd = for all )(, XFBA ∈ ; (D2): )(1),( XPAAAd c ∈⇔= ; 
(D3):  0),( =BAd if and only if BA = , for all )(, XFBA ∈ ; 
(D4): for all )(,, XFCBA ∈ , if CBA ≤≤ , then ),(),( BAdCAd ≥  and ),(),( CBdCAd ≥ . 

Where )(XF is fuzzy subsets of non-empty set X and )(XP stands for the sets of all crisp sets in X . 

A New Distance between Interval-Valued Fuzzy Sets 

Definition 3.1 Let },...,,{ 21 nxxxX = , )(, XSIBA ∈ . Supspose T is a left-continuous t-norm and TR is 

the corresponding residuated implication. Let 
1

1( , ) 1 ( ( ( ), ( )), ( ( ), ( )))
n

i i i i
i

d A B T A x B x B x A x
n

ρ ρ
=

= − ∑ , 

where ))}(),(()),(),((min{))(),(( irirTililTii xBxARxBxARxBxA =ρ . Then d is called a 
distance metric on )(XSI  and )),(( dXSI is called a logic metric space.  

Theorem 3.1 d defined by Definition 3.1 is a distance metric on )(XSI . 

Proof:(D1):Due to )))(),(()),(),((()))(),(()),(),((( iiiiiiii xBxAxAxBTxAxBxBxAT ρρρρ =  

Then ),(),( ABdBAd = . 

(D2): Suppose for ni ≤≤1 , ]0,0[)( =ixA and ]1,1[)( =i
c xA , then 1))(),(( =i

c
i xAxAρ . 

And 0))(),(( =ii
c xAxAρ . Thus we have 

1

1( , ) 1 [1,0] 1
n

c

i
d A A T

n =
= − =∑ .Similarly, we can prove 

that if )1](1,1[)( nixA i ≤≤= , then 1),( =cAAd . If 1),( =cAAd , then by Definition 3.1, we 

can obtain 
1

1 ( ( ( ), ( )), ( ( ), ( ))) 0
n

c c
i i i i

i
T A x A x A x A x

n
ρ ρ

=
=∑ ,  

i.e. 0)))(),(()),(),((( =ii
c

i
c

i xAxAxAxAT ρρ , then 0))(),(( =i
c

i xAxAρ or 
0))(),(( =ii

c xAxAρ . If 0))(),(( =i
c

i xAxAρ , then 1)( =il xA and ( ) 0=i
c
l xA , i.e., ( ) [ ]1,1=il xA . 

Similarly, if 0))(),(( =ii
c xAxAρ , then ]0,0[)( =ixA . Therefore, if 1),( =cAAd  then 

)(XPA∈ . 
(D4): If A B C≤ ≤ , then )()()( ililil xCxBxA ≤≤  and )()()( iririr xCxBxA ≤≤ , i.e.,

))(),(())(),(( iiii xAxCxAxB ρρ ≤  and ))(),(())(),(( iiii xBxCxAxC ρρ ≤ . Thus, 
),(),( BAdCAd ≥  and ),(),( CBdCAd ≥ . Therefore, d  is a distance on )(XSI .  

Proposition 3.1 (1) If R is deloG  implication and T is corresponding t-norm, then,  

∑
=

∧−=
n

i
iiGiiGG xAxBxBxA

n
BAd

1
))}(),(())(),(({11),( ρρ

                                   
 

(2) If R  is 0R  implication and T is corresponding t-norm, then,  

∑
=

∨−+−=
n

i
iiii xAxBxBxAT

n
BAd

1
0000 }0)1))(),(())(),(((11),( ρρ

                             
 

(3) If R is Goguen  implication and T is corresponding t-norm, then 
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0 1

1 ( ) ( ) ( ) ( )( , ) 1 {( 1) ( 1)}.
( ) ( ) ( ) ( )

n
l i r i l i r i

G
i

l i r i l i r i

B x B x A x A xd A B
n A x A x A x B x=

== − ∧ ∧ ⋅ ∧ ∧∑
                        

 

(4) If R is zLucasiewic implication and T  is corresponding t-norm, then, 

.}0)1))(),(())(),(({(11),(
1
∑
=

∨−+−=
n

i
iiLiiLL xAxBxBxA

n
BAd ρρ

                             
 

By above four interval-valued distance metrics, we can construct four interval-valued fuzzy 
metric spaces )),(( GdXSI , )),(( 0dXSI , )),((

0GdXSI and )),(( LdXSI , respectively. 

Analysis of Four Interval-Valued Fuzzy Metric Spaces Structures 

In a metric space ),( dY , let Yy∈ . For arbitrary 0 1ε< < , if we could always find a another 
point Yy ∈' such that ε<),( 'yyd , then we say that y is a condensation point of Y . Otherwise, 
if exists 0δ > such that for every Yy ∈' , δ≥),( 'yyd , then we say that y  is an isolated point. In 
this section, we analyze condensation points and isolated points in these four metric spaces 

)),(( GdXSI , )),(( 0dXSI , )),((
0GdXSI  and )),(( LdXSI  respectively. Let },...,,{ 21 nxxxX = , 

( )A SI X∈ , if there exists Xxk ∈ , such that ]1,1[)( =kxA , then A  is a normal interval-valued 
fuzzy set. 

Theorem 4.1 Let },...,,{ 21 nxxxX = and )(XSIA∈ . Then A is condensation point of ( )( ), GSI X d  

if and only if A is normal interval-valued fuzzy set on X .  

Proof : Let A be normal interval-valued fuzzy set, then there exists kx X∈ such that ]1,1[)( =ixA . 

For all )10( ，∈ε , take ( ) [1 ,1 ]- -kB x ε ε= , ）（ kjxAxB jj ≠= )()( . It is obvious that B A≠ and 

1

1( , ) 1 ( ( ( ), ( )), ( ( ), ( )))
n

G i i i i
i

d A B T A x B x B x A x
n

ρ ρ
=

= − ∑

1

11 (min{ ( ( ), ( )), ( ( ), ( ))},min{ ( ( ), ( )), ( ( ), ( ))})
n

G l i l i G r i r i G l i l i G r i r i
i

T R A x B x R A x B x R B x A x R B x A x
n =

= − ∑     

εεε <=−+−−=
n

n
n

))1()1((11 .Therefore, there always exists an interval-valued fuzzy set B which is 

different from A in the arbitrary neighborhood of A , i.e. ε<),( BAd . Thus, A is condensation 
point in the metric space )),(( GdXSI . 

If A is not normal, then ]1,1[)( ≠ixA  for all Xxi ∈ . Take arbitrary )(XSIB∈  such that 
AB ≠ , then there exists Xxk ∈  such that )()( kk xAxB ≠  and )()( klkl xBxA < . We can easily 

prove that )()))(),(()),(),((( klkkkk xAxAxBxBxAT ≤ρρ . Moreover, when ）（ kixBxA ii ≠= )()( , 
then 1)))(),(()),(),((( =iiii xAxBxBxAT ρρ . Thus, suppose there only exists Xxk ∈ such that 

)1](,[)()( 121 ≠=≠ aaaxAxB kk , Then ( ) ( ) ( )( ) ( ) ( )( )( )
1

1, 1 , , ,
n

G i i i i
i

d A B T A x B x B x A x
n

ρ ρ
=

= − ∑  

( )( ) ( )1 1

1 11 1 1 0n a a
n n

δ≥ − − + = − = > . As a result, there exists 0δ > , such that there is no 

interval-valued fuzzy set different from A  in the δ  neighborhood of A , i.e. A  is an isolated 
point of )),(( GdXSI .  
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Theorem 4.2 Let },...,,{ 21 nxxxX = and )(XSIA∈ . Then A is condensation point of )),(( 0dXSI  if 

and only if A or cA is normal interval-valued fuzzy set on X . 

Proof: Assume that A and cA are both not normal interval-valued fuzzy set. Then for all Xxi ∈ , 
]1,1[)( ≠ixA  and ]0,0[)( ≠ixA . Take arbitrary )(XSIB∈  such that AB ≠ , then there exists 

Xxk ∈ , such that ])0,0[],[]1,1[],]([,[)()( 212121 ≠≠=≠ aaandaaaaxAxB kk . We can easily 
prove that c

kkkk aaxAxBxBxAT 11)))(),(()),(),((( ∨≤ρρ . Furthermore, when ）（ kixAxB ii ≠= )()( , 

then 1)))(),(()),(),((( =iiii xAxBxBxAT ρρ . Thus, suppose there only exists Xxk ∈  such that 

1 2 1 2( ) ( ) [ , ]([ , ] [1,1]k kB x A x a a a a≠ = ≠  and 1 2[ , ] [0,0])a a ≠ , hence 

0))1()1((11)))(),(()),(),(((11),( 1110 >≥−∨+−−≥∑−= = δρρ aan
n

xAxBxBxAT
n

BAd iiii
n
i .As a 

result, there is no interval-valued fuzzy set different from A in the 0δ > neighborhood of A . Hence, 
A is isolated point of )),(( 0dXSI . 

Secondly, if A is normal, then A is a condensation point of )),(( 0dXSI . The proof is similar to that 

of Theorem 4.1. If cA is normal, then there exists kx such that ]0,0[)( =kxA . For all )1,0(∈ε , take 
)(XSIB∈  such that ],[)( εε=kxB , ))(()( kjxAxB jj ≠= .  

Then ερρ -1)))(),(()),(),((( =kkkk xAxBxBxAT , 1)))(),(()),(),((( =jjjj xAxBxBxAT ρρ .  

Thus 0
1

1 1( , ) 1 ( ( ( ), ( )), ( ( ), ( ))) 1 (( 1) 1 )-
n

i i i i
i

d A B T A x B x B x A x n
n n n

ερ ρ ε ε
=

= − = − − + = <∑ .  

Therefore, A is condensation point of )),(( 0dXSI .  

Theorem 4.3 Let },...,,{ 21 nxxxX = and )(XSIA∈ . )1](0,0[)( nixA i ≤≤=  is the only isolated 
point of )),((

0GdXSI . 

Proof: Let .,...,1],0,0[)( nixA i == . Then for all )(XSIB∈ satisfying AB ≠ , for all Xxi ∈ , 
]0,0[)( ≠ixB and ]0,0[)( =ixA , then we have ( ( ( ), ( )), ( ( ), ( ))) 0i i i iT A x B x B x A xρ ρ = . Hence, 

ερρ >=∑−= = 1)))(),(()),(),(((11),( 10 iiii
n
iG xAxBxBxAT

n
BAd . Therefore, A is isolated point of 

)),((
0GdXSI . If for all Xxi ∈ , 0)( ≠il xA , then 0)( ≠ir xA , then exists Xxk ∈ , such that

)0](,[)( 121 ≠= cccxA k . Given 0ε > and given 1

1m
ε

> , 2

1m
ε

> and 1 2m m< , let 1
1

1 )11( c
m

b −= and

2
2

2 )11( c
m

b −= . Let )(XSIB∈ , such that ],[)( 21 bbxB k =  , ))(()( kjxAxB jj ≠= , then we have

)11()11()))(),(()),(),(((
21 mm

xAxBxBxAT kkkk −∧−=ρρ  and 1)))(),(()),(),((( =jjjj xAxBxBxAT ρρ . Thus 

0 1

1( , ) 1 ( ( ( ), ( )),
n

G i i
i

d A B T A x B x
n

ρ
=

= − ∑
1 2

1 1 1( ( ), ( ))) 1 (( 1) (1 ) (1 ))i iB x A x n
n m m

ρ = − − + − ∧ −

1 2

1 1 1 1 1{( ) ( )}
n n nm n nm

= − ∧ − εε
≤≤=

nnmnm
}1,1max{

21

. Hence, A is condensation point of )),((
0GdXSI . 

Theorem 4.4 Let },...,,{ 21 nxxxX = . Then there is no isolated point in the logic metric space 
)),(( LdXSI . 
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Proof : )))(),(()),(),(((11),(),()( 1 iiii
n
iL xAxBxBxAT

n
BAdXSIxA ρρ=∑−=∈∀  

))}()(())()({(1))}()(())()({(1
11 iririlil

n
iiririlil

n
i xAxBxAxB

n
xBxAxBxA

n
−∨−∑+−∨−∑= == . For all 

0>ε , we can find )(XSIB∈ such that 
2

)()( ε
<− ilil xBxA  and ),...,1(

2
)()( nixBxA irir =<−

ε
.  

Then, ε<),( BAdL  i.e., A  is condensation point of )),(( LdXSI .  

Conclusions 
In this paper, a new distance metric between interval-valued fuzzy sets is proposed, which is 
induced by left-continuous t-norm and corresponding residuated implication. By comparing and 
analyzing the structures of four special interval-valued fuzzy metric spaces respectively, we proved 
that there is no isolated point in )),(( LdXSI , and there is only one isolated point in )),((

0GdXSI . 
However, there are too many isolated points in )),(( GdXSI and )),(( 0dXSI . In order to better study 
interval-valued fuzzy reasoning, we don’t expect there are too many isolated points in 
interval-valued fuzzy metric spaces. Therefore, interval-valued fuzzy metric spaces )),(( LdXSI  
and )),((

0GdXSI  are more suitable for interval-valued fuzzy reasoning.  
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